FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ

FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in... fw2.2 is one of the few QTLs thus far isolated from plants and the first one known to control fruit size. While it has been established that FW2.2 is a regulator (either directly or indirectly) of cell division, FW2.2 does not share sequence homology to any protein of known function (Frary et al. Science 289:85–88, 2000; Cong et al. Proc Natl Acad Sci USA 99:13606–13611, 2002; Liu et al. Plant Physiol 132:292–299, 2003). Thus, the mechanism by which FW2.2 mediates cell division in developing fruit is currently unknown. In an effort to remedy this situation, a combination of yeast two-hybrid screens, in vitro binding assays and cell bombardment studies were performed. The results provide strong evidence that FW2.2 physically interacts at or near the plasma membrane with the regulatory (beta) subunit of a CKII kinase. CKII kinases are well-studied in both yeast and animals where they form part of cell cycle related signaling pathway. Thus while FW2.2 is a plant-specific protein and regulates cell division in a specialized plant organ (fruit), it appears to participate in a cell-cycle control signal transduction pathway that predates the divergence of single- and multi-cellular organisms. These results thus provide a glimpse into how ancient and conserved regulatory processes can be co-opted in the evolution of novel organs such as fruit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ

Loading next page...
 
/lp/springer_journal/fw2-2-and-cell-cycle-control-in-developing-tomato-fruit-a-possible-GislRVzJYG
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9062-6
Publisher site
See Article on Publisher Site

Abstract

fw2.2 is one of the few QTLs thus far isolated from plants and the first one known to control fruit size. While it has been established that FW2.2 is a regulator (either directly or indirectly) of cell division, FW2.2 does not share sequence homology to any protein of known function (Frary et al. Science 289:85–88, 2000; Cong et al. Proc Natl Acad Sci USA 99:13606–13611, 2002; Liu et al. Plant Physiol 132:292–299, 2003). Thus, the mechanism by which FW2.2 mediates cell division in developing fruit is currently unknown. In an effort to remedy this situation, a combination of yeast two-hybrid screens, in vitro binding assays and cell bombardment studies were performed. The results provide strong evidence that FW2.2 physically interacts at or near the plasma membrane with the regulatory (beta) subunit of a CKII kinase. CKII kinases are well-studied in both yeast and animals where they form part of cell cycle related signaling pathway. Thus while FW2.2 is a plant-specific protein and regulates cell division in a specialized plant organ (fruit), it appears to participate in a cell-cycle control signal transduction pathway that predates the divergence of single- and multi-cellular organisms. These results thus provide a glimpse into how ancient and conserved regulatory processes can be co-opted in the evolution of novel organs such as fruit.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 29, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off