Fused features mining for depth-based hand gesture recognition to classify blind human communication

Fused features mining for depth-based hand gesture recognition to classify blind human communication Gesture recognition and hand pose tracking are applicable techniques in human–computer interaction fields. Depth data obtained by depth cameras present a very informative explanation of the body or in particular hand pose that it can be used for more accurate gesture recognition systems. The hand detection and feature extraction process are very challenging task in the RGB images that they can be effectively dissolved with simple ways with depth data. However, depth data could be combined with the color information for more reliable recognition. A common hand gesture recognition system requires identifying the hand and its position or direction, extracting some useful features and applying a suitable machine-learning method to detect the performed gesture. This paper presents the novel fusion of the enhanced features for the classification of static signs of the sign language. It begins by explaining how the hand can be separated from the scene by depth data. Then, a combination feature extraction method is introduced for extracting some appropriate features of the images. Finally, an artificial neural network classifier is trained with these fused features and applied to critically analyze various descriptors performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Computing and Applications Springer Journals

Fused features mining for depth-based hand gesture recognition to classify blind human communication

Loading next page...
 
/lp/springer_journal/fused-features-mining-for-depth-based-hand-gesture-recognition-to-jmAzNLJS01
Publisher
Springer Journals
Copyright
Copyright © 2016 by The Natural Computing Applications Forum
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Data Mining and Knowledge Discovery; Probability and Statistics in Computer Science; Computational Science and Engineering; Image Processing and Computer Vision; Computational Biology/Bioinformatics
ISSN
0941-0643
eISSN
1433-3058
D.O.I.
10.1007/s00521-016-2244-5
Publisher site
See Article on Publisher Site

Abstract

Gesture recognition and hand pose tracking are applicable techniques in human–computer interaction fields. Depth data obtained by depth cameras present a very informative explanation of the body or in particular hand pose that it can be used for more accurate gesture recognition systems. The hand detection and feature extraction process are very challenging task in the RGB images that they can be effectively dissolved with simple ways with depth data. However, depth data could be combined with the color information for more reliable recognition. A common hand gesture recognition system requires identifying the hand and its position or direction, extracting some useful features and applying a suitable machine-learning method to detect the performed gesture. This paper presents the novel fusion of the enhanced features for the classification of static signs of the sign language. It begins by explaining how the hand can be separated from the scene by depth data. Then, a combination feature extraction method is introduced for extracting some appropriate features of the images. Finally, an artificial neural network classifier is trained with these fused features and applied to critically analyze various descriptors performance.

Journal

Neural Computing and ApplicationsSpringer Journals

Published: Mar 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off