Further evidence reveals that okra mottle virus arose from a double recombination event

Further evidence reveals that okra mottle virus arose from a double recombination event As a result of surveys of okra begomoviruses (genus Begomovirus , family Geminiviridae ) conducted over the last five years in Central Brazil, we report the complete genome sequence of an isolate of okra mottle virus (OMoV). The DNA-A and DNA-B components were 2660 and 2653 nucleotides (nt) long, respectively, and they were most closely related to the DNA-A (~99 % nt identity) and DNA-B (~98 % nt identity) components of an OMoV isolate from a soybean plant. A phylogenetic tree was generated based on these sequences, and it was shown that both of the OMoV DNA components were grouped in a branch with Brazilian begomoviruses known to infect weeds. By recombination analysis, strong evidence was observed that the OMoV genome may have been the product of a double inter-species recombination event. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Further evidence reveals that okra mottle virus arose from a double recombination event

Loading next page...
 
/lp/springer_journal/further-evidence-reveals-that-okra-mottle-virus-arose-from-a-double-P0FiIvyt9W
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1458-9
Publisher site
See Article on Publisher Site

Abstract

As a result of surveys of okra begomoviruses (genus Begomovirus , family Geminiviridae ) conducted over the last five years in Central Brazil, we report the complete genome sequence of an isolate of okra mottle virus (OMoV). The DNA-A and DNA-B components were 2660 and 2653 nucleotides (nt) long, respectively, and they were most closely related to the DNA-A (~99 % nt identity) and DNA-B (~98 % nt identity) components of an OMoV isolate from a soybean plant. A phylogenetic tree was generated based on these sequences, and it was shown that both of the OMoV DNA components were grouped in a branch with Brazilian begomoviruses known to infect weeds. By recombination analysis, strong evidence was observed that the OMoV genome may have been the product of a double inter-species recombination event.

Journal

Archives of VirologySpringer Journals

Published: Jan 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off