Fundamental Limitation on Cooling under Classical Noise

Fundamental Limitation on Cooling under Classical Noise We prove a general theorem that the action of arbitrary classical noise or random unitary channels can not increase the maximum population of any eigenstate of an open quantum system, assuming initial system-environment factorization. Such factorization is the conventional starting point for descriptions of open system dynamics. In particular, our theorem implies that a system can not be ideally cooled down unless it is initially prepared as a pure state. The resultant inequality rigorously constrains the possibility of cooling the system solely through temporal manipulation, i.e., dynamical control over the system Hamiltonian without resorting to measurement based cooling methods. It is a substantial generalization of the no-go theorem claiming that the exact ground state cooling is forbidden given initial system-thermal bath factorization, while here we prove even cooling is impossible under classical noise. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Fundamental Limitation on Cooling under Classical Noise

Loading next page...
 
/lp/springer_journal/fundamental-limitation-on-cooling-under-classical-noise-wckkTEzNHd
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-00194-9
Publisher site
See Article on Publisher Site

Abstract

We prove a general theorem that the action of arbitrary classical noise or random unitary channels can not increase the maximum population of any eigenstate of an open quantum system, assuming initial system-environment factorization. Such factorization is the conventional starting point for descriptions of open system dynamics. In particular, our theorem implies that a system can not be ideally cooled down unless it is initially prepared as a pure state. The resultant inequality rigorously constrains the possibility of cooling the system solely through temporal manipulation, i.e., dynamical control over the system Hamiltonian without resorting to measurement based cooling methods. It is a substantial generalization of the no-go theorem claiming that the exact ground state cooling is forbidden given initial system-thermal bath factorization, while here we prove even cooling is impossible under classical noise.

Journal

Scientific ReportsSpringer Journals

Published: Mar 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off