Functioning of defense systems in halophytes and glycophytes under progressing salinity

Functioning of defense systems in halophytes and glycophytes under progressing salinity Six-week-old Plantago major L. and Thellungiella halophila Mey. plants were subjected to progressing salinity by a daily increase in the NaCl concentration by 100 mM until the final concentration of 400 mM. A dynamics of stress-dependent accumulation of Na+ and Cl− ions, proline, and free polyamines and also activities of antioxidant enzymes, superoxide oxidase (SOD) and free, ion-bound, and covalently bound guaiacol-dependent peroxidases was studied. We also examined the intensity of gene expression encoding enzymes of proline metabolism and polyamine biosynthesis. It was shown that the high salt-resistance of the halophyte T. halophila was determined by plant capability of ion accumulation and stress-dependent proline accumulation. An important role in the maintenance of this plant homeostasis under salinity plays a high constitutive levels of activities of three types of peroxidases tested and also of proline manifesting a polyfunctional protective action. In contrast, P. major plants characterized by a lower tolerance to salt excess did not display a high constitutive level of proline or the activity of guaiacol-dependent peroxidases; they also were not capable of stress-induced accumulation of compatible osmolytes and did not accumulate the salt. However, this glycophyte contained relatively much spermidine and active SOD, which provided for a decrease in the damaging effects of reactive oxygen species under salt shock. In both plant species, it was established that salinity changed the intracellular content of polyamines, which was not dependent on the activity of gene transcription encoding the enzymes of their biosynthesis. The results obtained support a hypothesis that halophytes and glycophytes have some common mechanisms of tolerance to salinity, but the control of these mechanisms differs substantially. Russian Journal of Plant Physiology Springer Journals

Functioning of defense systems in halophytes and glycophytes under progressing salinity

Loading next page...
Copyright © 2007 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial