Functional plasticity of photosynthetic apparatus and its resistance to photoinhibition in Plantago media

Functional plasticity of photosynthetic apparatus and its resistance to photoinhibition in... Morphological and functional characteristics of Plantago media L. leaves were compared for plants growing at different light regimes on limestone outcrops in Southern Timan (62°45′N, 55°49′E). The plants grown in open areas under exposure to full sunlight had small leaves with low pigment content and high specific leaf weight; these leaves exhibited high photosynthetic capacity and elevated water use efficiency at high irradiance. The maximum photochemical activity of photosystem II (F v/F m) in leaves of sun plants remained at the level of about 0.8 throughout the day. The photosynthetic apparatus of sun plants was resistant to excess photosynthetically active radiation, mostly due to non-photochemical quenching of chlorophyll fluorescence (qN). This quenching was promoted by elevated deepoxiation of violaxanthin cycle pigments. Accumulation of zeaxanthin, a photoprotective pigment in sun plant leaves was observed already in the morning hours. The plant leaves grown in the shade of dense herbage were significantly larger than the sun leaves, with pigment content 1.5–2.0 times greater than in sun leaves; these leaves had low qN values and did not need extensive deepoxidation of violaxanthin cycle pigments. The data reveal the morphophysiological plasticity of plantain plants in relation to lighting regime. Environmental conditions can facilitate the formation of the ecotype with photosynthetic apparatus resistant to photoinhibition. Owing to this adjustment, hoary plantain plants are capable of surviving in ecotopes with high insolation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Functional plasticity of photosynthetic apparatus and its resistance to photoinhibition in Plantago media

Loading next page...
 
/lp/springer_journal/functional-plasticity-of-photosynthetic-apparatus-and-its-resistance-u4yDxXJl0f
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711040054
Publisher site
See Article on Publisher Site

Abstract

Morphological and functional characteristics of Plantago media L. leaves were compared for plants growing at different light regimes on limestone outcrops in Southern Timan (62°45′N, 55°49′E). The plants grown in open areas under exposure to full sunlight had small leaves with low pigment content and high specific leaf weight; these leaves exhibited high photosynthetic capacity and elevated water use efficiency at high irradiance. The maximum photochemical activity of photosystem II (F v/F m) in leaves of sun plants remained at the level of about 0.8 throughout the day. The photosynthetic apparatus of sun plants was resistant to excess photosynthetically active radiation, mostly due to non-photochemical quenching of chlorophyll fluorescence (qN). This quenching was promoted by elevated deepoxiation of violaxanthin cycle pigments. Accumulation of zeaxanthin, a photoprotective pigment in sun plant leaves was observed already in the morning hours. The plant leaves grown in the shade of dense herbage were significantly larger than the sun leaves, with pigment content 1.5–2.0 times greater than in sun leaves; these leaves had low qN values and did not need extensive deepoxidation of violaxanthin cycle pigments. The data reveal the morphophysiological plasticity of plantain plants in relation to lighting regime. Environmental conditions can facilitate the formation of the ecotype with photosynthetic apparatus resistant to photoinhibition. Owing to this adjustment, hoary plantain plants are capable of surviving in ecotopes with high insolation.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 17, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off