Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance

Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat... The involvement of nitric oxide (NO) and hydrogen peroxide (H2O2) in the formation of heat resistance induced by 1-min-long treatment with a temperature of 42°C in 3-day-old seedlings of winter soft wheat (Triticum aestivum L., cv. Elegiya) was studied. The content of NO in the roots was increased within 2 h after seedling hardening heating. The content of H2O2 was increased within 30 min after heating. This effect was neutralized when seedlings were treated with the nitric oxide scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and the inhibitor of NO synthase L-NAME (NG-nitro-L-arginine methyl ester). Seedling treatment with the antioxidants ionol and dimethylthiourea (DMTU) reduced the hardening-induced nitric oxide accumulation in tissues. When seedlings were treated with the NO donor sodium nitroprusside (SNP), the amount of endogenous NO and H2O2 in them increased; exogenous hydrogen peroxide affected similarly. Hardening heating and treatment with SNP and hydrogen peroxide increased seedling resistance to damaging heating, whereas NO antagonists (PTIO and L-NAME) and antioxidants (ionol and DMTU) prevented the development of seedling heat resistance after hardening heating. It is concluded that, during the induction of wheat seedling heat resistance by the hardening heating, functional interaction between NO and H2O2 as signaling messengers occurs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance

Loading next page...
 
/lp/springer_journal/functional-interaction-between-nitric-oxide-and-hydrogen-peroxide-bLHp5RXi30
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714060090
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial