Functional identification of ELO-like genes involved in very long chain fatty acid synthesis in Arabidopsis thaliana

Functional identification of ELO-like genes involved in very long chain fatty acid synthesis in... Very long chain fatty acids (VLCFAs) are essential lipid components in many plants. 3-Ketoacyl-CoA synthase (KCS) catalyzes the condensation reaction to form 3-ketoacyl-CoA in VLCFA synthesis. AtELO4 has been reported to be involved in VLCFA synthesis, functioning as a KCS in Arabidopsis. However, no studies on other three AtELO members have been reported. Here, we initially found by real-time PCR in Arabidopsis thaliana (L.) Heynh. that AtELO1, AtELO3, and AtELO4 displayed characteristic expression patterns, but AtELO2 was nearly expressed in any organ. Then the transient expression of ELO-like-eGFP fusions in Arabidopsis green leaf protoplasts showed that AtELO1, AtELO3, and AtELO4 were localized in the endoplasmic reticulum (ER), where VLCFA synthesis took place. Finally, we found that the contents of all fatty acids were decreased by 10–20% in seeds of atelo1 T-DNA insertion mutants. In seeds of Pro35S:AtELO1 plants, the levels of all remaining components, except C20:0 and C20:3, were significantly increased. Taken together, our study revealed biological functions of AtELO members and might lay the foundation for further genetic manipulations to generate oil crops with the high oil content. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Functional identification of ELO-like genes involved in very long chain fatty acid synthesis in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/functional-identification-of-elo-like-genes-involved-in-very-long-Tmsd0sl3Ck
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714060193
Publisher site
See Article on Publisher Site

Abstract

Very long chain fatty acids (VLCFAs) are essential lipid components in many plants. 3-Ketoacyl-CoA synthase (KCS) catalyzes the condensation reaction to form 3-ketoacyl-CoA in VLCFA synthesis. AtELO4 has been reported to be involved in VLCFA synthesis, functioning as a KCS in Arabidopsis. However, no studies on other three AtELO members have been reported. Here, we initially found by real-time PCR in Arabidopsis thaliana (L.) Heynh. that AtELO1, AtELO3, and AtELO4 displayed characteristic expression patterns, but AtELO2 was nearly expressed in any organ. Then the transient expression of ELO-like-eGFP fusions in Arabidopsis green leaf protoplasts showed that AtELO1, AtELO3, and AtELO4 were localized in the endoplasmic reticulum (ER), where VLCFA synthesis took place. Finally, we found that the contents of all fatty acids were decreased by 10–20% in seeds of atelo1 T-DNA insertion mutants. In seeds of Pro35S:AtELO1 plants, the levels of all remaining components, except C20:0 and C20:3, were significantly increased. Taken together, our study revealed biological functions of AtELO members and might lay the foundation for further genetic manipulations to generate oil crops with the high oil content.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 12, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off