Functional fragments of a relictual gametophytic self-incompatibility system are associated with the loci determining flower type of the heterostylous outcrosser Fagopyrum esculentum Moench. and the homostylous selfer F. homotropicum Ohnishi

Functional fragments of a relictual gametophytic self-incompatibility system are associated with... Functional fragments of presumably a relictual gametophytic self-incompatibility system (GSI) linked with the loci determining flower type were discovered by genetic analysis of an unilateral pre-zygotic barrier between the short-styled (thrum) morph of a heterostylous cross-pollinated species, Fagopyrum esculentum Moench., and a self-pollinator with homostylous flowers, F. homotropicum Ohnishi (asseccion C9139). The relic genes of GSI were revealed only in interspecific crosses. However, this is a direct experimental confirmation of a hypothesis proposed by Lewis (1954) which combined the heterostyly supergene components (G, P and A) with “pistil” and “pollen” parts of the S-locus of homomorphic self-incompatibility systems (I 1 and I 2). Also, this result provides strong evidence for the evolution of heterostyly upon the ruins of a gametophytic self-incompatibility system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Functional fragments of a relictual gametophytic self-incompatibility system are associated with the loci determining flower type of the heterostylous outcrosser Fagopyrum esculentum Moench. and the homostylous selfer F. homotropicum Ohnishi

Loading next page...
 
/lp/springer_journal/functional-fragments-of-a-relictual-gametophytic-self-incompatibility-w1ocucciCH
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795410111018
Publisher site
See Article on Publisher Site

Abstract

Functional fragments of presumably a relictual gametophytic self-incompatibility system (GSI) linked with the loci determining flower type were discovered by genetic analysis of an unilateral pre-zygotic barrier between the short-styled (thrum) morph of a heterostylous cross-pollinated species, Fagopyrum esculentum Moench., and a self-pollinator with homostylous flowers, F. homotropicum Ohnishi (asseccion C9139). The relic genes of GSI were revealed only in interspecific crosses. However, this is a direct experimental confirmation of a hypothesis proposed by Lewis (1954) which combined the heterostyly supergene components (G, P and A) with “pistil” and “pollen” parts of the S-locus of homomorphic self-incompatibility systems (I 1 and I 2). Also, this result provides strong evidence for the evolution of heterostyly upon the ruins of a gametophytic self-incompatibility system.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jan 20, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off