Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Functional Expression of the Murine Connexin 36 Gene Coding for a Neuron-Specific Gap Junctional Protein

Functional Expression of the Murine Connexin 36 Gene Coding for a Neuron-Specific Gap Junctional... The mouse connexin 36 (Cx36) gene was mapped on chromosome 2 and an identical transcriptional start site was determined in brain and retina on exon I. Rabbit polyclonal antibodies to the presumptive cytoplasmic loop of the Cx36 protein recognized in immunohistochemical analyses Cx36 expression in the retina, olfactory bulb, hippocampus, inferior olive and cerebellum. In olivary neurons strong punctate labeling at dendritic cell contacts and weaker labeling in the cytoplasm of dendrites were shown by immuno electron microscopy. After expression of mouse Cx36 cDNA in human HeLa cells, neurobiotin transfer was increased 1.8-fold and electrical conductance at least 15-fold compared to untransfected HeLa cells. No Lucifer Yellow transfer was detected in either untransfected or Cx36 transfected HeLa cells. Single Cx36 channels in transfected HeLa cells showed a unitary conductance of 14.3 ± 0.8 pS. The sensitivity of Cx36 channels to transjunctional voltage was low in both HeLa-Cx36 cells and Xenopus oocytes expressing mouse Cx36. No increased transfer of neurobiotin was detected in heterotypic gap junctions formed by Cx36 and 9 other connexins expressed in HeLa cells. Our results suggest that Cx36 channels function as electrical synapses for transmission of electrical and metabolic signals between neurons in the central nervous system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Functional Expression of the Murine Connexin 36 Gene Coding for a Neuron-Specific Gap Junctional Protein

Loading next page...
 
/lp/springer_journal/functional-expression-of-the-murine-connexin-36-gene-coding-for-a-SWec4atVAS

References (39)

Publisher
Springer Journals
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
DOI
10.1007/s00232001094
Publisher site
See Article on Publisher Site

Abstract

The mouse connexin 36 (Cx36) gene was mapped on chromosome 2 and an identical transcriptional start site was determined in brain and retina on exon I. Rabbit polyclonal antibodies to the presumptive cytoplasmic loop of the Cx36 protein recognized in immunohistochemical analyses Cx36 expression in the retina, olfactory bulb, hippocampus, inferior olive and cerebellum. In olivary neurons strong punctate labeling at dendritic cell contacts and weaker labeling in the cytoplasm of dendrites were shown by immuno electron microscopy. After expression of mouse Cx36 cDNA in human HeLa cells, neurobiotin transfer was increased 1.8-fold and electrical conductance at least 15-fold compared to untransfected HeLa cells. No Lucifer Yellow transfer was detected in either untransfected or Cx36 transfected HeLa cells. Single Cx36 channels in transfected HeLa cells showed a unitary conductance of 14.3 ± 0.8 pS. The sensitivity of Cx36 channels to transjunctional voltage was low in both HeLa-Cx36 cells and Xenopus oocytes expressing mouse Cx36. No increased transfer of neurobiotin was detected in heterotypic gap junctions formed by Cx36 and 9 other connexins expressed in HeLa cells. Our results suggest that Cx36 channels function as electrical synapses for transmission of electrical and metabolic signals between neurons in the central nervous system.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 1, 2000

There are no references for this article.