Functional evolution of cis-regulatory modules of STMADS11 superclade MADS-box genes

Functional evolution of cis-regulatory modules of STMADS11 superclade MADS-box genes Evolution of phenotypic morphologies is closely associated with modular organization of cis-regulatory elements underlying expression divergence. The MADS-box gene family is the subject of extensive studies that try to unscramble the structural complexity of flowering plants. This study is envisaged to explore the potential of CRMs in highly constrained non-coding elements of STMADS11superclade MADS-box genes in expression divergence. Phylogenetic reconstruction differentiated the STMADS11 genes into SVP-like, ZMM19-like, MPF1-like and MPF2-like clades. Differential gene expression in vegetative and floral organs was evident within the clades as well as at inter-clade level. The genomic DNA search for clusters of short motifs and sequence conservation of the −2 kb promoter region of particularly, MPF2-like clade permitted to establish three well defined CRMs where transcription factors bind, being CRM1 the activator, CRM2 the repressor, and CRM3 the enhancer element. Similar clusters were also mapped in the large 1st introns in the coding region. Within these CRMs many transcription factor-binding sites, particularly the hotspots for MADS-domain TF binding elements—CArG-boxes, directing sepal specific expression in Arabidopsis—were accrued in the CRM1 of MPF2-like promoters. Site-directed mutagenesis and motif swapping through reporter assays allude towards their implication as functionally active elements. In terms of directional evolution of MPF2-like promoters, CRMs are significantly more conserved than flanking regions, hence, bearing the signatures for purifying selection. Thus, CRMs are the pervasive feature of STMADS11 genes and mutations and/or appearance of new transcription factor binding sites and position of the CRMs are responsible for the divergence in expression patterns in this clade. These results have implications in understanding functional evolution of cis-regulatory modules in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Functional evolution of cis-regulatory modules of STMADS11 superclade MADS-box genes

Loading next page...
 
/lp/springer_journal/functional-evolution-of-cis-regulatory-modules-of-stmads11-superclade-LXepZIaeXo
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0105-5
Publisher site
See Article on Publisher Site

Abstract

Evolution of phenotypic morphologies is closely associated with modular organization of cis-regulatory elements underlying expression divergence. The MADS-box gene family is the subject of extensive studies that try to unscramble the structural complexity of flowering plants. This study is envisaged to explore the potential of CRMs in highly constrained non-coding elements of STMADS11superclade MADS-box genes in expression divergence. Phylogenetic reconstruction differentiated the STMADS11 genes into SVP-like, ZMM19-like, MPF1-like and MPF2-like clades. Differential gene expression in vegetative and floral organs was evident within the clades as well as at inter-clade level. The genomic DNA search for clusters of short motifs and sequence conservation of the −2 kb promoter region of particularly, MPF2-like clade permitted to establish three well defined CRMs where transcription factors bind, being CRM1 the activator, CRM2 the repressor, and CRM3 the enhancer element. Similar clusters were also mapped in the large 1st introns in the coding region. Within these CRMs many transcription factor-binding sites, particularly the hotspots for MADS-domain TF binding elements—CArG-boxes, directing sepal specific expression in Arabidopsis—were accrued in the CRM1 of MPF2-like promoters. Site-directed mutagenesis and motif swapping through reporter assays allude towards their implication as functionally active elements. In terms of directional evolution of MPF2-like promoters, CRMs are significantly more conserved than flanking regions, hence, bearing the signatures for purifying selection. Thus, CRMs are the pervasive feature of STMADS11 genes and mutations and/or appearance of new transcription factor binding sites and position of the CRMs are responsible for the divergence in expression patterns in this clade. These results have implications in understanding functional evolution of cis-regulatory modules in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 17, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off