Functional characterization of two chimeric proteins between a Petunia inflata S-locus F-box protein, PiSLF2, and a PiSLF-like protein, PiSLFLb-S2

Functional characterization of two chimeric proteins between a Petunia inflata S-locus F-box... Self-incompatible solanaceous species possess the S-RNase and SLF (S-locus F-box) genes at the highly polymorphic S-locus, and their products mediate S-haplotype-specific rejection of pollen tubes in the style. After a pollen tube grows into the style, the S-RNases produced in the style are taken up; however, only self S-RNase (product of the matching S-haplotype) can inhibit the subsequent growth of the pollen tube. Based on the finding that non-self interactions between PiSLF (Petunia inflata SLF) and S-RNase are stronger than self-interactions, and based on the biochemical properties of PiSLF, we previously proposed that a PiSLF preferentially interacts with its non-self S-RNases to mediate their ubiquitination and degradation, thereby only allowing self S-RNase to exert its cytotoxic function. We further divided PiSLF into three potential Functional Domains (FDs), FD1-FD3, based on sequence comparison of PiSLF and PiSLF-like proteins, and based on S-RNase-binding properties of these proteins and various truncated forms of PiSLF2 (S 2 allelic variant of PiSLF). In this work, we examined the in vivo function of FD2, which we proposed to be responsible for strong, general interactions between PiSLF and S-RNase. We swapped FD2 of PiSLF2 with the corresponding region of PiSLFLb-S2 (S 2 allelic variant of a PiSLF-like protein), and expressed GFP-fused chimeric proteins, named b-2-b and 2-b-2, in S 2 S 3 transgenic plants. We showed that neither chimeric protein retained the SI function of PiSLF2, suggesting that FD2 is necessary, but not sufficient, for the function of PiSLF. Moreover, since we previously found that b-2-b and 2-b-2 only interacted with S3-RNase ~50 and ~30%, respectively, as strongly as did PiSLF2 in vitro, their inability to function as PiSLF2 is also consistent with our model predicating on strong interaction between a PiSLF and its non-self S-RNases as part of the biochemical basis for S-haplotype-specific rejection of pollen tubes. Plant Molecular Biology Springer Journals

Functional characterization of two chimeric proteins between a Petunia inflata S-locus F-box protein, PiSLF2, and a PiSLF-like protein, PiSLFLb-S2

Loading next page...
Springer Netherlands
Copyright © 2010 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial