Functional characterization of the bovine foamy virus miRNA expression cassette and its dumbbell-shaped pri-miRNA

Functional characterization of the bovine foamy virus miRNA expression cassette and its... Foamy viruses are unconventional and complex retroviruses distinct from the other members of the Retroviridae family. Currently, no disease has been firmly linked to persistent foamy virus infection of their cognate host including simians, bovines, felines, and equines or upon zoonotic transmission of different simian foamy viruses to humans. Bovine and simian foamy viruses have been recently shown to encode a RNA polymerase-III-driven micro RNA cluster which likely modulates and regulates host–virus interactions at different levels. Using sub-genomic bovine foamy virus micro RNA expression plasmids and dual luciferase reporter assays as readout, the requirements for expression and processing of the bovine foamy virus micro RNAs have been analyzed. Here, we report that the minimal BFV micro RNA cassette is significantly weaker than a U6 promoter-based construct and strongly suppressed by flanking sequences. The primary micro RNA sequence can be manipulated and chimerized as long as the dumbbell-like folding of the primary micro RNA is maintained. Since more subtle changes are associated with reduced functionality, the overall structure and shape, but possibly individual elements and residues also, are important for the expression and processing of the bovine foamy virus micro RNAs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Virus Genes Springer Journals

Functional characterization of the bovine foamy virus miRNA expression cassette and its dumbbell-shaped pri-miRNA

Loading next page...
 
/lp/springer_journal/functional-characterization-of-the-bovine-foamy-virus-mirna-expression-Ad2rGMrcJv
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Medical Microbiology; Virology; Plant Sciences
ISSN
0920-8569
eISSN
1572-994X
D.O.I.
10.1007/s11262-018-1574-z
Publisher site
See Article on Publisher Site

Abstract

Foamy viruses are unconventional and complex retroviruses distinct from the other members of the Retroviridae family. Currently, no disease has been firmly linked to persistent foamy virus infection of their cognate host including simians, bovines, felines, and equines or upon zoonotic transmission of different simian foamy viruses to humans. Bovine and simian foamy viruses have been recently shown to encode a RNA polymerase-III-driven micro RNA cluster which likely modulates and regulates host–virus interactions at different levels. Using sub-genomic bovine foamy virus micro RNA expression plasmids and dual luciferase reporter assays as readout, the requirements for expression and processing of the bovine foamy virus micro RNAs have been analyzed. Here, we report that the minimal BFV micro RNA cassette is significantly weaker than a U6 promoter-based construct and strongly suppressed by flanking sequences. The primary micro RNA sequence can be manipulated and chimerized as long as the dumbbell-like folding of the primary micro RNA is maintained. Since more subtle changes are associated with reduced functionality, the overall structure and shape, but possibly individual elements and residues also, are important for the expression and processing of the bovine foamy virus micro RNAs.

Journal

Virus GenesSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off