Functional Characterization of SdcF from Bacillus licheniformis, a Homolog of the SLC13 Na+/Dicarboxylate Transporters

Functional Characterization of SdcF from Bacillus licheniformis, a Homolog of the SLC13... The SdcF transporter from Bacillus licheniformis (gene BL02343) is a member of the divalent anion sodium symporter (DASS)/SLC13 family that includes Na+/dicarboxylate transporters from bacteria to humans. SdcF was functionally expressed in Escherichia coli (BL21) and assayed in right side out membrane vesicles. ScdF catalyzed the sodium-coupled transport of succinate and α-ketoglutarate. Succinate transport was strongly inhibited by malate, fumarate, tartrate, oxaloacetate and l-aspartate. Similar to the other DASS transporters, succinate transport by SdcF was inhibited by anthranilic acids, N-(p-amylcinnamoyl) anthranilic acid and flufenamate. SdcF transport was cation-dependent, with a K 0.5 for sodium of ~1.5 mM and a K 0.5 for Li+ of ~40 mM. Succinate transport kinetics by SdcF were sigmoidal, suggesting that SdcF may contain two cooperative substrate binding sites. The results support an ordered binding mechanism for SdcF in which sodium binds first and succinate binds last. We conclude that SdcF is a secondary active transporter for four- and five-carbon dicarboxylates that can use Na+ or Li+ as a driving cation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Functional Characterization of SdcF from Bacillus licheniformis, a Homolog of the SLC13 Na+/Dicarboxylate Transporters

Loading next page...
 
/lp/springer_journal/functional-characterization-of-sdcf-from-bacillus-licheniformis-a-k7jNCQlbs8
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9590-3
Publisher site
See Article on Publisher Site

Abstract

The SdcF transporter from Bacillus licheniformis (gene BL02343) is a member of the divalent anion sodium symporter (DASS)/SLC13 family that includes Na+/dicarboxylate transporters from bacteria to humans. SdcF was functionally expressed in Escherichia coli (BL21) and assayed in right side out membrane vesicles. ScdF catalyzed the sodium-coupled transport of succinate and α-ketoglutarate. Succinate transport was strongly inhibited by malate, fumarate, tartrate, oxaloacetate and l-aspartate. Similar to the other DASS transporters, succinate transport by SdcF was inhibited by anthranilic acids, N-(p-amylcinnamoyl) anthranilic acid and flufenamate. SdcF transport was cation-dependent, with a K 0.5 for sodium of ~1.5 mM and a K 0.5 for Li+ of ~40 mM. Succinate transport kinetics by SdcF were sigmoidal, suggesting that SdcF may contain two cooperative substrate binding sites. The results support an ordered binding mechanism for SdcF in which sodium binds first and succinate binds last. We conclude that SdcF is a secondary active transporter for four- and five-carbon dicarboxylates that can use Na+ or Li+ as a driving cation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 25, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off