Functional Characterization of Na+/H+ Exchangers in Primary Cultures of Prairie Dog Gallbladder

Functional Characterization of Na+/H+ Exchangers in Primary Cultures of Prairie Dog Gallbladder Gallbladder Na+ absorption is linked to gallstone formation in prairie dogs. We previously reported Na+/H+ exchanger (NHE1-3) expression in native gallbladder tissues. Here we report the functional characterization of NHE1, NHE2 and NHE3 in primary cultures of prairie dog gallbladder epithelial cells (GBECs). Immunohistochemical studies showed that GBECs grown to confluency are homogeneous epithelial cells of gastrointestinal origin. Electron microscopic analysis of GBECs demonstrated that the cells form polarized monolayers characterized by tight junctions and apical microvilli. GBECs grown on Snapwells exhibited polarity and developed transepithelial short-circuit current, I sc, (11.6 ± 0.5 µA · cm−2), potential differences, V t (2.1 ± 0.2 mV), and resistance, R t (169 ± 12 Ω · cm2). NHE activity in GBECs assessed by measuring dimethylamiloride-inhibitable 22Na+ uptake under a H+ gradient was the same whether grown on permeable Snapwells or plastic wells. The basal rate of 22Na+ uptake was 21.4 ± 1.3 nmol · mg prot−1 · min−1, of which 9.5 ± 0.7 (~45%) was mediated through apically-restricted NHE. Selective inhibition with HOE-694 revealed that NHE1, NHE2 and NHE3 accounted for ~6%, ~66% and ~28% of GBECs’ total NHE activity, respectively. GBECs exhibited saturable NHE kinetics (V max 9.2 ± 0.3 nmol · mg prot−1 · min−1; K m 11.4 ± 1.4 mM Na+). Expression of NHE1, NHE2 and NHE3 mRNAs was confirmed by RT-PCR analysis. These results demonstrate that the primary cultures of GBECs exhibit Na+ transport characteristics similar to native gallbladder tissues, suggesting that these cells can be used as a tool for studying the mechanisms of gallbladder ion transport both under physiologic conditions and during gallstone formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Functional Characterization of Na+/H+ Exchangers in Primary Cultures of Prairie Dog Gallbladder

Loading next page...
 
/lp/springer_journal/functional-characterization-of-na-h-exchangers-in-primary-cultures-of-HzMr20k1l1
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0647-6
Publisher site
See Article on Publisher Site

Abstract

Gallbladder Na+ absorption is linked to gallstone formation in prairie dogs. We previously reported Na+/H+ exchanger (NHE1-3) expression in native gallbladder tissues. Here we report the functional characterization of NHE1, NHE2 and NHE3 in primary cultures of prairie dog gallbladder epithelial cells (GBECs). Immunohistochemical studies showed that GBECs grown to confluency are homogeneous epithelial cells of gastrointestinal origin. Electron microscopic analysis of GBECs demonstrated that the cells form polarized monolayers characterized by tight junctions and apical microvilli. GBECs grown on Snapwells exhibited polarity and developed transepithelial short-circuit current, I sc, (11.6 ± 0.5 µA · cm−2), potential differences, V t (2.1 ± 0.2 mV), and resistance, R t (169 ± 12 Ω · cm2). NHE activity in GBECs assessed by measuring dimethylamiloride-inhibitable 22Na+ uptake under a H+ gradient was the same whether grown on permeable Snapwells or plastic wells. The basal rate of 22Na+ uptake was 21.4 ± 1.3 nmol · mg prot−1 · min−1, of which 9.5 ± 0.7 (~45%) was mediated through apically-restricted NHE. Selective inhibition with HOE-694 revealed that NHE1, NHE2 and NHE3 accounted for ~6%, ~66% and ~28% of GBECs’ total NHE activity, respectively. GBECs exhibited saturable NHE kinetics (V max 9.2 ± 0.3 nmol · mg prot−1 · min−1; K m 11.4 ± 1.4 mM Na+). Expression of NHE1, NHE2 and NHE3 mRNAs was confirmed by RT-PCR analysis. These results demonstrate that the primary cultures of GBECs exhibit Na+ transport characteristics similar to native gallbladder tissues, suggesting that these cells can be used as a tool for studying the mechanisms of gallbladder ion transport both under physiologic conditions and during gallstone formation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off