Functional and structural characterization of synthetic cardosin B-derived rennet

Functional and structural characterization of synthetic cardosin B-derived rennet The potential of using a synthetic cardosin-based rennet in cheese manufacturing was recently demonstrated with the development and optimization of production of a recombinant form of cardosin B in Kluyveromyces lactis. With the goal of providing a more detailed characterization of this rennet, we herein evaluate the impact of the plant-specific insert (PSI) on cardosin B secretion in this yeast, and provide a thorough analysis of the specificity requirements as well as the biochemical and structural properties of the isolated recombinant protease. We demonstrate that the PSI domain can be substituted by different linker sequences without substantially affecting protein secretion and milk clotting activity. However, the presence of small portions of the PSI results in dramatic reductions of secretion yields in this heterologous system. Kinetic characterization and specificity profiling results clearly suggest that synthetic cardosin B displays lower catalytic efficiency and is more sequence selective than native cardosin B. Elucidation of the structure of synthetic cardosin B confirms the canonical fold of an aspartic protease with the presence of two high mannose-type, N-linked glycan structures; however, there are some differences in the conformation of the flap region when compared to cardosin A. These subtle variations in catalytic properties and the more stringent substrate specificity of synthetic cardosin B help to explain the observed suitability of this rennet for cheese production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Functional and structural characterization of synthetic cardosin B-derived rennet

Loading next page...
 
/lp/springer_journal/functional-and-structural-characterization-of-synthetic-cardosin-b-GxrWEhYS2D
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-017-8445-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial