Functional and Molecular Characterization of a Volume-activated Chloride Channel in Rabbit Corneal Epithelial Cells

Functional and Molecular Characterization of a Volume-activated Chloride Channel in Rabbit... We characterized the functional and molecular properties of a volume-regulated anion channel (VRAC) in SV40-immortalized rabbit corneal epithelial cells (tRCE), since they mediate a robust regulatory volume decrease (RVD) response during exposure to a hypotonic challenge. Whole-cell patch clamp-monitored chloride currents and light- scattering measurements evaluated temporal cell- volume responsiveness to hypoosmotic challenges. Exposure to 200 mOsm medium elicited an outwardly-rectifying current (VACC), which was reversible upon reperfusion with isotonic (300 mOsm) medium. VACC and RVD were chloride-dependent because either chloride removal or application of NPPB (100 μM) suppressed these responses. VACC behavior exhibited voltage-dependent inhibition in the presence of DIDS (500 μM), whereas inhibition by both NPPB (100 μM) and niflumic acid (500 μM) was voltage-independent. VACC was insensitive to glibenclamide (250 μM), verapamil (500 μM) or removal of extracellular calcium. Phorbol dibutyrate, PDBu, (100 nM) had no effect on activated VACC. However, preincubation with PDBu prior to hypotonic challenge prevented VACC and RVD responses as well as prolonged characteristic time. An inactive phorbol ester analogue had no effect on RVD behavior. Moreover, Northern blot analysis verified expression of ClC-3 gene transcripts. The presence of ClC-3 transcripts along with the correspondence between the effects of known ClC-3 inhibitors on VACC and RVD suggest that ClC-3 activation underlies these responses to hypotonic-induced cell swelling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Functional and Molecular Characterization of a Volume-activated Chloride Channel in Rabbit Corneal Epithelial Cells

Loading next page...
 
/lp/springer_journal/functional-and-molecular-characterization-of-a-volume-activated-UEJjv5LGcJ
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-004-0706-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial