Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses

Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on... RING finger proteins comprise a large family and play key roles in regulating growth/developmental processes, hormone signaling and responses to biotic and abiotic stresses in plants. A rice gene, OsBIRF1, encoding a putative RING-H2 finger protein, was cloned and identified. OsBIRF1 encodes a 396 amino acid protein belonging to the ATL family characterized by a conserved RING-H2 finger domain (C-X2-C-X15-C-X1-H-X2-H-X2-C-X10-C-X2-C), a transmembrane domain at the N-terminal, a basic amino acid rich region and a characteristic GLD region. Expression of OsBIRF1 was up-regulated in rice seedlings after treatment with benzothaidiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid and jasmonic acid, and was induced differentially in incompatible but not compatible interactions between rice and Magnaporthe grisea, the causal agent of blast disease. Transgenic tobacco plants that constitutively express OsBIRF1 exhibit enhanced disease resistance against tobacco mosaic virus and Pseudomonas syringae pv. tabaci and elevated expression levels of defense-related genes, e.g. PR-1, PR-2, PR-3 and PR-5. The OsBIRF1-overexpressing transgenic tobacco plants show increased oxidative stress tolerance to exogenous treatment with methyl viologen and H2O2, and up-regulate expression of oxidative stress-related genes. Reduced ABA sensitivity in root elongation and increased drought tolerance in seed germination were also observed in OsBIRF1 transgenic tobacco plants. Furthermore, the transgenic tobacco plants show longer roots and higher plant heights as compared with the wild-type plants, suggesting that overexpression of OsBIRF1 promote plant growth. These results demonstrate that OsBIRF1 has pleiotropic effects on growth and defense response against multiple abiotic and biotic stresses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses

Loading next page...
 
/lp/springer_journal/functional-analysis-reveals-pleiotropic-effects-of-rice-ring-h2-finger-ZTzmp4k11P
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9349-x
Publisher site
See Article on Publisher Site

Abstract

RING finger proteins comprise a large family and play key roles in regulating growth/developmental processes, hormone signaling and responses to biotic and abiotic stresses in plants. A rice gene, OsBIRF1, encoding a putative RING-H2 finger protein, was cloned and identified. OsBIRF1 encodes a 396 amino acid protein belonging to the ATL family characterized by a conserved RING-H2 finger domain (C-X2-C-X15-C-X1-H-X2-H-X2-C-X10-C-X2-C), a transmembrane domain at the N-terminal, a basic amino acid rich region and a characteristic GLD region. Expression of OsBIRF1 was up-regulated in rice seedlings after treatment with benzothaidiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid and jasmonic acid, and was induced differentially in incompatible but not compatible interactions between rice and Magnaporthe grisea, the causal agent of blast disease. Transgenic tobacco plants that constitutively express OsBIRF1 exhibit enhanced disease resistance against tobacco mosaic virus and Pseudomonas syringae pv. tabaci and elevated expression levels of defense-related genes, e.g. PR-1, PR-2, PR-3 and PR-5. The OsBIRF1-overexpressing transgenic tobacco plants show increased oxidative stress tolerance to exogenous treatment with methyl viologen and H2O2, and up-regulate expression of oxidative stress-related genes. Reduced ABA sensitivity in root elongation and increased drought tolerance in seed germination were also observed in OsBIRF1 transgenic tobacco plants. Furthermore, the transgenic tobacco plants show longer roots and higher plant heights as compared with the wild-type plants, suggesting that overexpression of OsBIRF1 promote plant growth. These results demonstrate that OsBIRF1 has pleiotropic effects on growth and defense response against multiple abiotic and biotic stresses.

Journal

Plant Molecular BiologySpringer Journals

Published: May 22, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off