Functional analysis of SlEZ1 a tomato Enhancer of zeste (E(z)) gene demonstrates a role in flower development

Functional analysis of SlEZ1 a tomato Enhancer of zeste (E(z)) gene demonstrates a role in flower... The Enhancer of Zeste (E(z)) Polycomb group (PcG) proteins, which are encoded by a small gene family in Arabidopsis thaliana, have been shown to participate to the control of flowering and seed development. For the time being, little is known about the function of these proteins in other plants. In tomato E(z) proteins are encoded by at least two genes namely SlEZ1 and SlEZ2 while a third gene, SlEZ3, is likely to encode a truncated non-functional protein. The analysis of the corresponding mRNA demonstrates that these two genes are differentially regulated during plant and fruit development. We also show that SlEZ1 and SlEZ2 are targeted to the nuclei. These results together with protein sequence analysis makes it likely that both proteins are functional E(z) proteins. The characterisation of SlEZ1 RNAi lines suggests that although there might be some functional redundancy between SlEZ1 and SlEZ2 in most plant organs, the former protein is likely to play specific function in flower development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Functional analysis of SlEZ1 a tomato Enhancer of zeste (E(z)) gene demonstrates a role in flower development

Loading next page...
 
/lp/springer_journal/functional-analysis-of-slez1-a-tomato-enhancer-of-zeste-e-z-gene-lUeJULdlnq
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9657-9
Publisher site
See Article on Publisher Site

Abstract

The Enhancer of Zeste (E(z)) Polycomb group (PcG) proteins, which are encoded by a small gene family in Arabidopsis thaliana, have been shown to participate to the control of flowering and seed development. For the time being, little is known about the function of these proteins in other plants. In tomato E(z) proteins are encoded by at least two genes namely SlEZ1 and SlEZ2 while a third gene, SlEZ3, is likely to encode a truncated non-functional protein. The analysis of the corresponding mRNA demonstrates that these two genes are differentially regulated during plant and fruit development. We also show that SlEZ1 and SlEZ2 are targeted to the nuclei. These results together with protein sequence analysis makes it likely that both proteins are functional E(z) proteins. The characterisation of SlEZ1 RNAi lines suggests that although there might be some functional redundancy between SlEZ1 and SlEZ2 in most plant organs, the former protein is likely to play specific function in flower development.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 27, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off