Functional analysis of OsPGIP1 in rice sheath blight resistance

Functional analysis of OsPGIP1 in rice sheath blight resistance As one of the most devastating diseases of rice, sheath blight causes severe rice yield loss. However, little progress has been made in rice breeding for sheath blight resistance. It has been reported that polygalacturonase inhibiting proteins can inhibit the degradation of the plant cell wall by polygalacturonases from pathogens. Here, we prokaryotically expressed and purified OsPGIP1 protein, which was verified by Western blot analysis. Activity assay confirmed the inhibitory activity of OsPGIP1 against the PGase from Rhizoctonia solani. In addition, the location of OsPGIP1 was determined by subcellular localization. Subsequently, we overexpressed OsPGIP1 in Zhonghua 11 (Oryza sativa L. ssp. japonica), and applied PCR and Southern blot analysis to identify the positive T0 transgenic plants with single-copy insertions. Germination assay of the seeds from T1 transgenic plants was carried out to select homozygous OsPGIP1 transgenic lines, and the expression levels of OsPGIP1 in these lines were analyzed by quantitative real-time PCR. Field testing of R. solani inoculation showed that the sheath blight resistance of the transgenic rice was significantly improved. Furthermore, the levels of sheath blight resistance were in accordance with the expression levels of OsPGIP1 in the transgenic lines. Our results reveal the functions of OsPGIP1 and its resistance mechanism to rice sheath blight, which will facilitate rice breeding for sheath blight resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Functional analysis of OsPGIP1 in rice sheath blight resistance

Loading next page...
 
/lp/springer_journal/functional-analysis-of-ospgip1-in-rice-sheath-blight-resistance-wI00Y2UJxH
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0269-7
Publisher site
See Article on Publisher Site

Abstract

As one of the most devastating diseases of rice, sheath blight causes severe rice yield loss. However, little progress has been made in rice breeding for sheath blight resistance. It has been reported that polygalacturonase inhibiting proteins can inhibit the degradation of the plant cell wall by polygalacturonases from pathogens. Here, we prokaryotically expressed and purified OsPGIP1 protein, which was verified by Western blot analysis. Activity assay confirmed the inhibitory activity of OsPGIP1 against the PGase from Rhizoctonia solani. In addition, the location of OsPGIP1 was determined by subcellular localization. Subsequently, we overexpressed OsPGIP1 in Zhonghua 11 (Oryza sativa L. ssp. japonica), and applied PCR and Southern blot analysis to identify the positive T0 transgenic plants with single-copy insertions. Germination assay of the seeds from T1 transgenic plants was carried out to select homozygous OsPGIP1 transgenic lines, and the expression levels of OsPGIP1 in these lines were analyzed by quantitative real-time PCR. Field testing of R. solani inoculation showed that the sheath blight resistance of the transgenic rice was significantly improved. Furthermore, the levels of sheath blight resistance were in accordance with the expression levels of OsPGIP1 in the transgenic lines. Our results reveal the functions of OsPGIP1 and its resistance mechanism to rice sheath blight, which will facilitate rice breeding for sheath blight resistance.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 9, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off