Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1

Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1 Gibberellic acid (GA) is both necessary and sufficient to promote fiber elongation in cultured fertilized ovules of the upland cotton variety Coker 312. This is likely due to the temporal and spatial regulation of GA biosynthesis, perception, and subsequent signal transduction that leads to alterations in gene expression and morphology. Our results indicate that the initiation of fiber elongation by the application of GA to cultured ovules corresponds with increased expression of genes that encode xyloglucan endotransglycosylase/hydrolase (XTH) and expansin (EXP) that are involved in promoting cell elongation. To gain a better understanding of the GA signaling components in cotton, that lead to such changes in gene expression, two GA receptor genes (GhGID1a and GhGID1b) and two DELLA protein genes (GhSLR1a and GhSLR1b) that are orthologous to the rice GA receptor (GID1) and the rice DELLA gene (SLR1), respectively, were characterized. Similar to the GA biosynthetic genes, expression of GhGID1a and GhGID1b is under the negative regulation by GA while GA positively regulates GhSLR1a. Recombinant GST-GhGID1s showed GA-binding activity in vitro that was augmented in the presence of GhSLR1a, GhSLR1b, or rice SLR1, indicating complex formation between the receptors and repressor proteins. This was further supported by the GA-dependent interaction of these proteins in yeast cells. Ectopic expression of the GhGID1a in the rice gid1-3 mutant plants rescued the GA-insensitive dwarf phenotype, which demonstrates that it is a functional GA receptor. Furthermore, ectopic expression of GhSLR1b in wild type Arabidopsis led to reduced growth and upregulated expression of DELLA-responsive genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1

Loading next page...
 
/lp/springer_journal/functional-analysis-of-cotton-orthologs-of-ga-signal-transduction-1VhDZys61L
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9347-z
Publisher site
See Article on Publisher Site

Abstract

Gibberellic acid (GA) is both necessary and sufficient to promote fiber elongation in cultured fertilized ovules of the upland cotton variety Coker 312. This is likely due to the temporal and spatial regulation of GA biosynthesis, perception, and subsequent signal transduction that leads to alterations in gene expression and morphology. Our results indicate that the initiation of fiber elongation by the application of GA to cultured ovules corresponds with increased expression of genes that encode xyloglucan endotransglycosylase/hydrolase (XTH) and expansin (EXP) that are involved in promoting cell elongation. To gain a better understanding of the GA signaling components in cotton, that lead to such changes in gene expression, two GA receptor genes (GhGID1a and GhGID1b) and two DELLA protein genes (GhSLR1a and GhSLR1b) that are orthologous to the rice GA receptor (GID1) and the rice DELLA gene (SLR1), respectively, were characterized. Similar to the GA biosynthetic genes, expression of GhGID1a and GhGID1b is under the negative regulation by GA while GA positively regulates GhSLR1a. Recombinant GST-GhGID1s showed GA-binding activity in vitro that was augmented in the presence of GhSLR1a, GhSLR1b, or rice SLR1, indicating complex formation between the receptors and repressor proteins. This was further supported by the GA-dependent interaction of these proteins in yeast cells. Ectopic expression of the GhGID1a in the rice gid1-3 mutant plants rescued the GA-insensitive dwarf phenotype, which demonstrates that it is a functional GA receptor. Furthermore, ectopic expression of GhSLR1b in wild type Arabidopsis led to reduced growth and upregulated expression of DELLA-responsive genes.

Journal

Plant Molecular BiologySpringer Journals

Published: May 28, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off