Functional analysis of Arabidopsis genes involved in mitochondrial iron–sulfur cluster assembly

Functional analysis of Arabidopsis genes involved in mitochondrial iron–sulfur cluster assembly Machinery for the assembly of the iron–sulfur ([Fe–S]) clusters that function as cofactors in a wide variety of proteins has been identified in microbes, insects, and animals. Homologs of the genes involved in [Fe–S] cluster biogenesis have recently been found in plants, as well, and point to the existence of two distinct systems in these organisms, one located in plastids and one in mitochondria. Here we present the first biochemical confirmation of the activity of two components of the mitochondrial machinery in Arabidopsis, AtNFS1 and AtISU1. Analysis of the expression patterns of the corresponding genes, as well as AtISU2 and AtISU3, and the phenotypes of plants in which these genes are up or down-regulated are consistent with a role for the mitochondrial [Fe–S] assembly system in the maturation of proteins required for normal plant development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Functional analysis of Arabidopsis genes involved in mitochondrial iron–sulfur cluster assembly

Loading next page...
 
/lp/springer_journal/functional-analysis-of-arabidopsis-genes-involved-in-mitochondrial-f6Bg5ETeqY
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9147-x
Publisher site
See Article on Publisher Site

Abstract

Machinery for the assembly of the iron–sulfur ([Fe–S]) clusters that function as cofactors in a wide variety of proteins has been identified in microbes, insects, and animals. Homologs of the genes involved in [Fe–S] cluster biogenesis have recently been found in plants, as well, and point to the existence of two distinct systems in these organisms, one located in plastids and one in mitochondria. Here we present the first biochemical confirmation of the activity of two components of the mitochondrial machinery in Arabidopsis, AtNFS1 and AtISU1. Analysis of the expression patterns of the corresponding genes, as well as AtISU2 and AtISU3, and the phenotypes of plants in which these genes are up or down-regulated are consistent with a role for the mitochondrial [Fe–S] assembly system in the maturation of proteins required for normal plant development.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 7, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off