Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1

Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea... We previously isolated a Brassica juncea cDNA encoding BjCHI1, a novel chitinase with two chitin-binding domains. Synthesis of its mRNA is induced by wounding, methyl jasmonate treatment, Aspergillus niger infection and caterpillar Pieris rapae feeding, suggesting that the protein has a role in defense. In that it possesses two chitin-binding domains, BjCHI1 resembles the precursor of Urtica dioica agglutinin but unlike that protein, BjCHI1 retains its chitinase catalytic domain after post-translational processing. To explore the properties of multi-domain BjCHI1, we have expressed recombinant BjCHI1 and two derivatives, which lack one (BjCHI2) or both (BjCHI3) chitin-binding domains, as secreted proteins in Pichia pastoris. Recombinant BjCHI1 and BjCHI2, showed apparent molecular masses on SDS-PAGE larger than calculated, and could be deglycosylated using α-mannosidase. Recombinant BjCHI3, without the proline/threonine-rich linker region containing predicted O-glycosylation sites, did not appear to be processed by α-mannosidase. BjCHI1’s ability to agglutinate rabbit erythrocytes is unique among known chitinases. Both chitin-binding domains are essential for agglutination; this property is absent in recombinant BjCHI2 and BjCHI3. To identify potential catalytic residues, we generated site-directed mutations in recombinant BjCHI3. Mutation E212A showed the largest effect, exhibiting 0 of wild-type specific activity. H211N and R361A resulted in considerable (>91) activity loss, implying these charged residues are also important in catalysis. E234A showed 36 retention of activity and substitution Y269D, 50. The least affected mutants were E349A and D360A, with 73 and 68 retention, respectively. Like Y269, E349 and D360 are possibly involved in substrate binding rather than catalysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1

Loading next page...
 
/lp/springer_journal/functional-analyses-of-the-chitin-binding-domains-and-the-catalytic-bkFHDSVO3u
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-3382-1
Publisher site
See Article on Publisher Site

Abstract

We previously isolated a Brassica juncea cDNA encoding BjCHI1, a novel chitinase with two chitin-binding domains. Synthesis of its mRNA is induced by wounding, methyl jasmonate treatment, Aspergillus niger infection and caterpillar Pieris rapae feeding, suggesting that the protein has a role in defense. In that it possesses two chitin-binding domains, BjCHI1 resembles the precursor of Urtica dioica agglutinin but unlike that protein, BjCHI1 retains its chitinase catalytic domain after post-translational processing. To explore the properties of multi-domain BjCHI1, we have expressed recombinant BjCHI1 and two derivatives, which lack one (BjCHI2) or both (BjCHI3) chitin-binding domains, as secreted proteins in Pichia pastoris. Recombinant BjCHI1 and BjCHI2, showed apparent molecular masses on SDS-PAGE larger than calculated, and could be deglycosylated using α-mannosidase. Recombinant BjCHI3, without the proline/threonine-rich linker region containing predicted O-glycosylation sites, did not appear to be processed by α-mannosidase. BjCHI1’s ability to agglutinate rabbit erythrocytes is unique among known chitinases. Both chitin-binding domains are essential for agglutination; this property is absent in recombinant BjCHI2 and BjCHI3. To identify potential catalytic residues, we generated site-directed mutations in recombinant BjCHI3. Mutation E212A showed the largest effect, exhibiting 0 of wild-type specific activity. H211N and R361A resulted in considerable (>91) activity loss, implying these charged residues are also important in catalysis. E234A showed 36 retention of activity and substitution Y269D, 50. The least affected mutants were E349A and D360A, with 73 and 68 retention, respectively. Like Y269, E349 and D360 are possibly involved in substrate binding rather than catalysis.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off