Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice

Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic... Microarray analysis of a salt-tolerant wheat mutant identified a gene of unknown function that was induced by exposure to high levels of salt and subsequently denoted TaSIP (Triticum aestivum salt-induced protein). Quantitative PCR analysis revealed that TaSIP expression was induced not only by salt, but also by drought, abscisic acid (ABA), and other environmental stress factors. Transgenic rice plants that expressed an RNA interference construct specific for a rice gene homologous to TaSIP was more susceptible to salt stress than wild-type rice plants. Subcellular localization studies showed that the TaSIP localized to the cell membrane. Under conditions of salt and drought stress, transgenic Arabidopsis plants that overexpressed TaSIP showed superior physiological properties compared with control plants, including lower Na+ content and upregulation of several stress resistance genes. Staining of transgenic tissues with β-glucuronidase (GUS) failed to indicate tissue-specific activity of the full-length TaSIP promoter. Quantitative analysis of GUS fluorescence in transgenic plants treated with ABA or salt stress revealed that the region 1,176–1,410 bp from the start codon contained an ABA-responsive element and that the region 579–1,176 bp from the start codon upstream of the exon contained a salt-stress-responsive element. Based on these results, we conclude that the key part of the TaSIP gene is the region of its promoter involved in salt tolerance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice

Loading next page...
 
/lp/springer_journal/function-of-the-wheat-tasip-gene-in-enhancing-drought-and-salt-1e8Eyr4Dw4
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0011-x
Publisher site
See Article on Publisher Site

Abstract

Microarray analysis of a salt-tolerant wheat mutant identified a gene of unknown function that was induced by exposure to high levels of salt and subsequently denoted TaSIP (Triticum aestivum salt-induced protein). Quantitative PCR analysis revealed that TaSIP expression was induced not only by salt, but also by drought, abscisic acid (ABA), and other environmental stress factors. Transgenic rice plants that expressed an RNA interference construct specific for a rice gene homologous to TaSIP was more susceptible to salt stress than wild-type rice plants. Subcellular localization studies showed that the TaSIP localized to the cell membrane. Under conditions of salt and drought stress, transgenic Arabidopsis plants that overexpressed TaSIP showed superior physiological properties compared with control plants, including lower Na+ content and upregulation of several stress resistance genes. Staining of transgenic tissues with β-glucuronidase (GUS) failed to indicate tissue-specific activity of the full-length TaSIP promoter. Quantitative analysis of GUS fluorescence in transgenic plants treated with ABA or salt stress revealed that the region 1,176–1,410 bp from the start codon contained an ABA-responsive element and that the region 579–1,176 bp from the start codon upstream of the exon contained a salt-stress-responsive element. Based on these results, we conclude that the key part of the TaSIP gene is the region of its promoter involved in salt tolerance.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 12, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off