Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii

Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas... When exposed to strong sunlight, photosynthetic organisms encounter photooxidative stress by the increased production of reactive oxygen species causing harmful damages to proteins and membranes. Consequently, a fast and specific induction of defense mechanisms is required to protect the organism from cell death. In Chlamydomonas reinhardtii, the glutathione peroxidase homologous gene GPXH/GPX5 was shown to be specifically upregulated by singlet oxygen formed during high light conditions presumably to prevent the accumulation of lipid hydroperoxides and membrane damage. We now showed that the GPXH protein is a thioredoxin-dependent peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. Furthermore, the GPXH gene seems to encode a dual-targeted protein, predicted to be localized both in the chloroplast and the cytoplasm, which is active with either plastidic TRXy or cytosolic TRXh1. Putative dual-targeting is achieved by alternative transcription and translation start sites expressed independently from either a TATA-box or an Initiator core promoter. Expression of both transcripts was upregulated by photooxidative stress even though with different strengths. The induction required the presence of the core promoter sequences and multiple upstream regulatory elements including a Sp1-like element and an earlier identified CRE/AP-1 homologous sequence. This element was further characterized by mutation analysis but could not be confirmed to be a consensus CRE or AP1 element. Instead, it rather seems to be another member of the large group of TGAC-transcription factor binding sites found to be involved in the response of different genes to oxidative stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii

Loading next page...
 
/lp/springer_journal/function-and-regulation-of-the-glutathione-peroxidase-homologous-gene-EWgGGRw7vx
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9540-8
Publisher site
See Article on Publisher Site

Abstract

When exposed to strong sunlight, photosynthetic organisms encounter photooxidative stress by the increased production of reactive oxygen species causing harmful damages to proteins and membranes. Consequently, a fast and specific induction of defense mechanisms is required to protect the organism from cell death. In Chlamydomonas reinhardtii, the glutathione peroxidase homologous gene GPXH/GPX5 was shown to be specifically upregulated by singlet oxygen formed during high light conditions presumably to prevent the accumulation of lipid hydroperoxides and membrane damage. We now showed that the GPXH protein is a thioredoxin-dependent peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides. Furthermore, the GPXH gene seems to encode a dual-targeted protein, predicted to be localized both in the chloroplast and the cytoplasm, which is active with either plastidic TRXy or cytosolic TRXh1. Putative dual-targeting is achieved by alternative transcription and translation start sites expressed independently from either a TATA-box or an Initiator core promoter. Expression of both transcripts was upregulated by photooxidative stress even though with different strengths. The induction required the presence of the core promoter sequences and multiple upstream regulatory elements including a Sp1-like element and an earlier identified CRE/AP-1 homologous sequence. This element was further characterized by mutation analysis but could not be confirmed to be a consensus CRE or AP1 element. Instead, it rather seems to be another member of the large group of TGAC-transcription factor binding sites found to be involved in the response of different genes to oxidative stress.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 19, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off