Full-length genome sequence analysis of a Hungarian porcine reproductive and respiratory syndrome virus isolated from a pig with severe respiratory disease

Full-length genome sequence analysis of a Hungarian porcine reproductive and respiratory syndrome... Here, we report the isolation of a type 1 porcine reproductive and respiratory syndrome virus (PRRSV) strain from a clinical outbreak of severe respiratory problems and high fever. Next-generation sequencing was used to determine the complete genome sequence of the isolate (9625/2012). The virus belongs to a new branch within subtype 1, clade D, and shows the highest similarity to PRRSV Olot/1991 and to the Amervac vaccine strain. Mutation analysis of 9625/2012 revealed no evidence of recombination but did show a high proportion of amino acid substitutions in the putative neutralizing epitopes, suggesting an important role of selective immune pressure in the evolution of PRRSV 9625/2012. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Full-length genome sequence analysis of a Hungarian porcine reproductive and respiratory syndrome virus isolated from a pig with severe respiratory disease

Loading next page...
 
/lp/springer_journal/full-length-genome-sequence-analysis-of-a-hungarian-porcine-c5IBe0DVcF
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-014-2265-2
Publisher site
See Article on Publisher Site

Abstract

Here, we report the isolation of a type 1 porcine reproductive and respiratory syndrome virus (PRRSV) strain from a clinical outbreak of severe respiratory problems and high fever. Next-generation sequencing was used to determine the complete genome sequence of the isolate (9625/2012). The virus belongs to a new branch within subtype 1, clade D, and shows the highest similarity to PRRSV Olot/1991 and to the Amervac vaccine strain. Mutation analysis of 9625/2012 revealed no evidence of recombination but did show a high proportion of amino acid substitutions in the putative neutralizing epitopes, suggesting an important role of selective immune pressure in the evolution of PRRSV 9625/2012.

Journal

Archives of VirologySpringer Journals

Published: Feb 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off