Full genome sequence of a putative novel mitovirus isolated from Rhizoctonia cerealis

Full genome sequence of a putative novel mitovirus isolated from Rhizoctonia cerealis A putative novel mitovirus was found in isolate R1084 of the fungus Rhizoctonia cerealis , the causal agent of sharp eyespot of wheat in China. The full genome sequence of the virus was determined and analyzed. The complete cDNA sequence is 3149 nucleotides long with 59.7 % A+T content. Using either the fungal mitochondrial or universal genetic code, the viral genome was found to contain a single large open reading frame that is predicted to encode a protein of 812 amino acids with an RNA-dependent RNA polymerase (RdRp) domain that is conserved in the mitovirus RdRp superfamily. The amino acid sequence of the RdRp domain is only 50 % identical to the corresponding domain in Sclerotinia sclerotiorum mitovirus 11, and therefore, this virus is proposed to be a novel mitovirus, designated as Rhizoctonia cerealis mitovirus 1-R1084 (RcMV1-R1084). The distinct codon usage of RcMV1-R1084 hints that this virus is potentially able to replicate not only in mitochondria but also in the cytoplasm. This is the first report of a full-length genomic sequence of a putative mitovirus in R. cerealis . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Full genome sequence of a putative novel mitovirus isolated from Rhizoctonia cerealis

Loading next page...
 
/lp/springer_journal/full-genome-sequence-of-a-putative-novel-mitovirus-isolated-from-NDnJ9YsByR
Publisher
Springer Vienna
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2431-1
Publisher site
See Article on Publisher Site

Abstract

A putative novel mitovirus was found in isolate R1084 of the fungus Rhizoctonia cerealis , the causal agent of sharp eyespot of wheat in China. The full genome sequence of the virus was determined and analyzed. The complete cDNA sequence is 3149 nucleotides long with 59.7 % A+T content. Using either the fungal mitochondrial or universal genetic code, the viral genome was found to contain a single large open reading frame that is predicted to encode a protein of 812 amino acids with an RNA-dependent RNA polymerase (RdRp) domain that is conserved in the mitovirus RdRp superfamily. The amino acid sequence of the RdRp domain is only 50 % identical to the corresponding domain in Sclerotinia sclerotiorum mitovirus 11, and therefore, this virus is proposed to be a novel mitovirus, designated as Rhizoctonia cerealis mitovirus 1-R1084 (RcMV1-R1084). The distinct codon usage of RcMV1-R1084 hints that this virus is potentially able to replicate not only in mitochondria but also in the cytoplasm. This is the first report of a full-length genomic sequence of a putative mitovirus in R. cerealis .

Journal

Archives of VirologySpringer Journals

Published: Jul 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off