Full-field measurements of flow through a scaled metal foam replica

Full-field measurements of flow through a scaled metal foam replica Open-celled foam geometries show great promise in heat/mass transfer, chemical treatment, and enhanced mixing applications. Flow measurements on these geometries have consisted primarily of observations of the upstream and downstream effects the foam has on the velocity field. Unfortunately, these observations give little insight into the flow inside the foam. We have performed quantitative flow measurements inside a scaled replica of a metal foam, ϕ = 0.921, D Cell = 2.5 mm, by Magnetic Resonance Velocimetry to better understand the fluid motion inside the foam and give an alternative method to determine the foam cell and pore sizes. Through these 3-D, spatially resolved measurements of the flow field for a cell Reynolds number of 840, we have shown that the transverse motion of the fluid has velocities 20–30% of the superficial velocity passing through the foam. This strong transverse motion creates and dissipates streamwise jets with peak velocities 2–3 times the superficial velocity and whose coherence length is strongly correlated to the cell size of the foam. This complex fluid motion is described as “mechanical mixing” and is attributed to the geometry of the foam. A mechanical dispersion coefficient, D M, was formed which demonstrates the transverse dispersion of this geometry to be 14 times the kinematic viscosity and 10 times the thermal diffusivity of air at 20°C and 1 atm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Full-field measurements of flow through a scaled metal foam replica

Loading next page...
 
/lp/springer_journal/full-field-measurements-of-flow-through-a-scaled-metal-foam-replica-4IrDJdyToM
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-1008-8
Publisher site
See Article on Publisher Site

Abstract

Open-celled foam geometries show great promise in heat/mass transfer, chemical treatment, and enhanced mixing applications. Flow measurements on these geometries have consisted primarily of observations of the upstream and downstream effects the foam has on the velocity field. Unfortunately, these observations give little insight into the flow inside the foam. We have performed quantitative flow measurements inside a scaled replica of a metal foam, ϕ = 0.921, D Cell = 2.5 mm, by Magnetic Resonance Velocimetry to better understand the fluid motion inside the foam and give an alternative method to determine the foam cell and pore sizes. Through these 3-D, spatially resolved measurements of the flow field for a cell Reynolds number of 840, we have shown that the transverse motion of the fluid has velocities 20–30% of the superficial velocity passing through the foam. This strong transverse motion creates and dissipates streamwise jets with peak velocities 2–3 times the superficial velocity and whose coherence length is strongly correlated to the cell size of the foam. This complex fluid motion is described as “mechanical mixing” and is attributed to the geometry of the foam. A mechanical dispersion coefficient, D M, was formed which demonstrates the transverse dispersion of this geometry to be 14 times the kinematic viscosity and 10 times the thermal diffusivity of air at 20°C and 1 atm.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 4, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off