Fugu double U6 promoter–driven long double-stranded RNA inhibits proliferation of viral hemorrhagic septicemia virus (VHSV) in fish cell lines

Fugu double U6 promoter–driven long double-stranded RNA inhibits proliferation of viral... A long double-stranded RNA (dsRNA)-producing vector driven by fugu double U6 promotors, in which the two promoters were arranged in a head-to-head fashion, was newly constructed. To determine whether the DNA-vector-based long dsRNAs can induce sequence-specific RNA interference (RNAi), Epithelioma papulosum cyprini (EPC) cells and chinook salmon embryonic (CHSE-214) cells were transfected with the long dsRNA vector targeting the G gene of VHSV, and its effect on expression of the G gene and viral proliferation was investigated. The sequence-specific inhibitory effect was further confirmed by analysis of interferon (IFN)-triggered Mx1 gene expression and cross-protection against infectious hematopoietic necrosis virus (IHNV). The fugu double U6 promoter–driven vector successfully produced long dsRNAs in EPC cells, a system that allows continuous production of long dsRNAs in transfected cells. The plasmid-based long dsRNAs targeting the VHSV G gene effectively suppressed G gene expression, but control dsRNAs targeting the EGFP gene did not. Furthermore, there was no significant difference in Mx gene expression between cells transfected with the long dsRNA-producing vector and those transfected with the control empty vector. These results suggest that G gene expression was suppressed not by type-I-IFN-mediated nonspecific inhibition but in a sequence-specific manner. Both EPC and CHSE-214 cells transfected with plasmids producing long dsRNAs targeting the VHSV G gene were protected against VHSV infection but were not protected against IHNV infection, suggesting sequence-specific RNAi-mediated inhibition of viral proliferation. In conclusion, we show, for the first time, long-dsRNA-mediated RNAi in fish cells. The DNA-vector-based long dsRNAs may provide an efficient tool for analysis of gene function in fish cells without preliminary burdensome work for selection of effective siRNA clones, and it may be applied as an antiviral measure in cultured fish. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Fugu double U6 promoter–driven long double-stranded RNA inhibits proliferation of viral hemorrhagic septicemia virus (VHSV) in fish cell lines

Loading next page...
 
/lp/springer_journal/fugu-double-u6-promoter-driven-long-double-stranded-rna-inhibits-pWHq677oVu
Publisher
Springer Vienna
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Biomedicine; Virology; Infectious Diseases; Medical Microbiology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1275-1
Publisher site
See Article on Publisher Site

Abstract

A long double-stranded RNA (dsRNA)-producing vector driven by fugu double U6 promotors, in which the two promoters were arranged in a head-to-head fashion, was newly constructed. To determine whether the DNA-vector-based long dsRNAs can induce sequence-specific RNA interference (RNAi), Epithelioma papulosum cyprini (EPC) cells and chinook salmon embryonic (CHSE-214) cells were transfected with the long dsRNA vector targeting the G gene of VHSV, and its effect on expression of the G gene and viral proliferation was investigated. The sequence-specific inhibitory effect was further confirmed by analysis of interferon (IFN)-triggered Mx1 gene expression and cross-protection against infectious hematopoietic necrosis virus (IHNV). The fugu double U6 promoter–driven vector successfully produced long dsRNAs in EPC cells, a system that allows continuous production of long dsRNAs in transfected cells. The plasmid-based long dsRNAs targeting the VHSV G gene effectively suppressed G gene expression, but control dsRNAs targeting the EGFP gene did not. Furthermore, there was no significant difference in Mx gene expression between cells transfected with the long dsRNA-producing vector and those transfected with the control empty vector. These results suggest that G gene expression was suppressed not by type-I-IFN-mediated nonspecific inhibition but in a sequence-specific manner. Both EPC and CHSE-214 cells transfected with plasmids producing long dsRNAs targeting the VHSV G gene were protected against VHSV infection but were not protected against IHNV infection, suggesting sequence-specific RNAi-mediated inhibition of viral proliferation. In conclusion, we show, for the first time, long-dsRNA-mediated RNAi in fish cells. The DNA-vector-based long dsRNAs may provide an efficient tool for analysis of gene function in fish cells without preliminary burdensome work for selection of effective siRNA clones, and it may be applied as an antiviral measure in cultured fish.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off