``Frustrated Exocytosis'' — A Novel Phenomenon: Membrane Fusion without Contents Release, Followed by Detachment and Reattachment of Dense Core Vesicles in Paramecium Cells

``Frustrated Exocytosis'' — A Novel Phenomenon: Membrane Fusion without Contents Release,... The lipophilic fluorescent dye, FM1-43, as now frequently used to stain cell membranes and to monitor exo-endocytosis and membrane recycling, induces a cortical [Ca2+] i transient and exocytosis of dense core vesicles (``trichocysts'') in Paramecium cells, when applied at usual concentrations (≤10 μm) in presence of extracellular Ca2+ ([Ca2+] o = 50 μm). When [Ca2+] o is kept at 30 nm (<[Ca2+]rest i ), in about one third of the population of extrudable trichocysts docked at the cell membrane, FM1-43 induces membrane fusion, visible by FM1-43 fluorescence of the vesicle membrane. However, in this system extrusion of secretory contents cannot occur in absence of any sufficient Ca2+ o . Upon readdition of Ca2+ o or some other appropriate Me2+ o at 90 μm, secretory contents can be released (complete exocytosis). Resulting ghosts formed in presence of Ca2+, Sr2+ or Mn2+ are vesicular, but when formed in presence of Mg2+, for reasons to be elucidated, they are tubular, though both types are endocytosed and lose their FM1-43 stain. In contrast, in presence of [Mg2+] o = 3 mm (which inhibits contents release), the exocytotic openings reseal and intact trichocysts with labeled membranes and with still condensed contents are detached from the cell surface (``frustrated exocytosis'') within ∼15 min. They undergo cytoplasmic streaming and saltatory redocking, with a half-time of ∼35 min. During this time, the population of redocked trichocysts amenable to exocytosis upon a second stimulus increases with a half-time of ∼35 min. Therefore, acquirement of competence for exocytotic membrane fusion may occur with only a small delay after docking, and this maturation process may last only a short time. A similar number of trichocysts can be detached by merely increasing [Mg2+] o to 3 mm, or by application of the anti-calmodulin drug, R21547 (calmidazolium). Essentially we show (i) requirement of calmodulin and appropriate [Me2+] to maintain docking sites in a functional state, (ii) requirement of Ca2+ o or of some other Me2+ o to drive membrane resealing during exo-endocytosis, (iii) requirement of an ``empty'' signal to go to the regular endocytotic pathway (with fading fluorescence), and (iv) occurrence of a ``filled'' signal for trichocysts to undergo detachment and redocking (with fluorescence) after ``frustrated exocytosis''. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

``Frustrated Exocytosis'' — A Novel Phenomenon: Membrane Fusion without Contents Release, Followed by Detachment and Reattachment of Dense Core Vesicles in Paramecium Cells

Loading next page...
 
/lp/springer_journal/frustrated-exocytosis-a-novel-phenomenon-membrane-fusion-without-4Ge6sVciYl
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232001093
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial