From outside to hyper-globalisation: an Artificial Neural Network ordinal classifier applied to measure the extent of globalisation

From outside to hyper-globalisation: an Artificial Neural Network ordinal classifier applied to... Globalisation has become a key concept in the social sciences to understand the accelerating changes occurred in modern societies during recent decades. As a consequence, measuring the influence of globalisation on the economic, social and political aspects of nations has been a requirement. There are many indices at present to calculate the extent of globalisation reached by each country. However, most of the methods used to build those indices suffer certain methodological limitations that hinder the wider dissemination and usefulness of their results. As an alternative, in this paper, we propose a methodology for ordinal ranking of countries associated with their globalisation level, which gives us an easier and more useful information about the different levels where countries are regarding to this criteria. Among Computational Intelligence techniques, Artificial Neural Networks (ANNs) have become dominant modelling paradigm. We have built a novel non-linear ordinal classifier by combining the Proportional Odd Models (POM) with ANNs that is able to classify countries according to their level of globalisation in six classes, which range from hyperglobalised countries to countries that remain outside the process of globalisation. The results could not be more encouraging. Our experiments yield robust results and show better outcomes than alternative linear and non-linear ordinal classifiers, which raises the possibility of developing a model of classification that might overcome some of the limitations of the indices currently employed to measure globalisation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

From outside to hyper-globalisation: an Artificial Neural Network ordinal classifier applied to measure the extent of globalisation

Loading next page...
 
/lp/springer_journal/from-outside-to-hyper-globalisation-an-artificial-neural-network-7fdIrKzXmV
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-015-0163-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial