From orthogonal projections to a generalized quantum search

From orthogonal projections to a generalized quantum search A quantum algorithm with certainty is introduced in order to find a marked pre-image of an element which is known to be in the image domain of an orthogonal projection operator. The analysis of our algorithm is made by using properties of the Moebius transformations acting on the complex projective line. This new algorithm closely resembles the quantum amplitude amplification algorithm, however it is proven that our algorithm is a proper generalization of the latter (with generalized phases), in such a way that the quantum search engine of the main operator of quantum amplification is included as a particular case. In order to show that there exist search problems that can be solved by our proposal but cannot be by applying the quantum amplitude amplification algorithm, we modify our algorithm as a cryptographic authentification protocol. This protocol results to be robust enough against attacks based on the quantum amplitude amplification algorithm. As a byproduct, we show a condition where it is impossible to find exactly a pre-image of an orthoghonal projection. This result generalizes the fact that, it is impossible to find a target state exactly by using quantum amplification on a three dimensional invariant subspace. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

From orthogonal projections to a generalized quantum search

Loading next page...
 
/lp/springer_journal/from-orthogonal-projections-to-a-generalized-quantum-search-zGSbiGWQRk
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0355-6
Publisher site
See Article on Publisher Site

Abstract

A quantum algorithm with certainty is introduced in order to find a marked pre-image of an element which is known to be in the image domain of an orthogonal projection operator. The analysis of our algorithm is made by using properties of the Moebius transformations acting on the complex projective line. This new algorithm closely resembles the quantum amplitude amplification algorithm, however it is proven that our algorithm is a proper generalization of the latter (with generalized phases), in such a way that the quantum search engine of the main operator of quantum amplification is included as a particular case. In order to show that there exist search problems that can be solved by our proposal but cannot be by applying the quantum amplitude amplification algorithm, we modify our algorithm as a cryptographic authentification protocol. This protocol results to be robust enough against attacks based on the quantum amplitude amplification algorithm. As a byproduct, we show a condition where it is impossible to find exactly a pre-image of an orthoghonal projection. This result generalizes the fact that, it is impossible to find a target state exactly by using quantum amplification on a three dimensional invariant subspace.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 6, 2012

References

  • Phase matching condition for quantum search with a generalized initial state
    Long, G.L.; Li, X.; Sun, Y.
  • Quantum computers and unstructured search: finding and counting items with an arbitrarily entangled initial state
    Carlini, A.; Hosoya, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off