From flow focusing to vortex formation in crossing microchannels

From flow focusing to vortex formation in crossing microchannels The paper is concerned with the experimental and numerical investigations of the vortex formation and flow focusing inside a cross-shaped microchannel domain. The local hydrodynamics in the junction area, upstream of the focusing region, is analyzed with the aim to characterize the onset and the evolution of the vortical structures, in correlation with the operating parameters. The numerical simulations based on a finite-volume approach are validated by direct flow visualizations using epifluorescence and confocal microscopy. The main result of the study is a flow pattern map, providing comprehensive information on the flow dynamics inside the microchannel junction as a function of the input flow rates and the corresponding Reynolds numbers. The flow pattern map identifies the limits of the flow focusing regime and the critical values of the parameters at which the vortical structures are formed. Beyond the breakdown of the classical flow focusing scenario with one focused output stream, flow patterns with two and four output streams are identified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microfluids and Nanofluids Springer Journals

From flow focusing to vortex formation in crossing microchannels

Loading next page...
 
/lp/springer_journal/from-flow-focusing-to-vortex-formation-in-crossing-microchannels-G61sWRlk8L
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Engineering; Engineering Fluid Dynamics; Biomedical Engineering; Analytical Chemistry; Nanotechnology and Microengineering
ISSN
1613-4982
eISSN
1613-4990
D.O.I.
10.1007/s10404-017-1975-7
Publisher site
See Article on Publisher Site

Abstract

The paper is concerned with the experimental and numerical investigations of the vortex formation and flow focusing inside a cross-shaped microchannel domain. The local hydrodynamics in the junction area, upstream of the focusing region, is analyzed with the aim to characterize the onset and the evolution of the vortical structures, in correlation with the operating parameters. The numerical simulations based on a finite-volume approach are validated by direct flow visualizations using epifluorescence and confocal microscopy. The main result of the study is a flow pattern map, providing comprehensive information on the flow dynamics inside the microchannel junction as a function of the input flow rates and the corresponding Reynolds numbers. The flow pattern map identifies the limits of the flow focusing regime and the critical values of the parameters at which the vortical structures are formed. Beyond the breakdown of the classical flow focusing scenario with one focused output stream, flow patterns with two and four output streams are identified.

Journal

Microfluids and NanofluidsSpringer Journals

Published: Aug 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off