FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important

FRIGIDA and related proteins have a conserved central domain and family specific N- and C-... Arabidopsis accessions are either winter-annuals, which require cold winter temperatures for spring flowering, or rapid-cycling summer annuals. Typically, winter annual accessions have functional FRIGIDA (FRI) and FRIGIDA-LIKE 1 (FRL1) proteins that promote high expression of FLOWERING LOCUS C (FLC), which prevents flowering until after winter. In contrast, many rapid-cycling accessions have low FLC levels because FRI is inactive. Using biochemical, functional and bioinformatic approaches, we show that FRI and FRL1 contain a stable, central domain that is conserved across the FRI superfamily. This core domain is monomeric in solution and primarily α-helical. We analysed the ability of several FRI deletion constructs to function in Arabidopsis plants. Our findings suggest that the C-terminus, which is predicted to be disordered, is required for FRI to promote FLC expression and may mediate protein:protein interactions. The contribution of the FRI N-terminus appears to be limited, as constructs missing these residues retained significant activity when expressed at high levels. The important N- and C-terminal regions differ between members of the FRI superfamily and sequence analysis identified five FRI families with distinct expression patterns in Arabidopsis, suggesting the families have separate biological roles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important

Loading next page...
 
/lp/springer_journal/frigida-and-related-proteins-have-a-conserved-central-domain-and-Kr0YpFcc0C
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9635-2
Publisher site
See Article on Publisher Site

Abstract

Arabidopsis accessions are either winter-annuals, which require cold winter temperatures for spring flowering, or rapid-cycling summer annuals. Typically, winter annual accessions have functional FRIGIDA (FRI) and FRIGIDA-LIKE 1 (FRL1) proteins that promote high expression of FLOWERING LOCUS C (FLC), which prevents flowering until after winter. In contrast, many rapid-cycling accessions have low FLC levels because FRI is inactive. Using biochemical, functional and bioinformatic approaches, we show that FRI and FRL1 contain a stable, central domain that is conserved across the FRI superfamily. This core domain is monomeric in solution and primarily α-helical. We analysed the ability of several FRI deletion constructs to function in Arabidopsis plants. Our findings suggest that the C-terminus, which is predicted to be disordered, is required for FRI to promote FLC expression and may mediate protein:protein interactions. The contribution of the FRI N-terminus appears to be limited, as constructs missing these residues retained significant activity when expressed at high levels. The important N- and C-terminal regions differ between members of the FRI superfamily and sequence analysis identified five FRI families with distinct expression patterns in Arabidopsis, suggesting the families have separate biological roles.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 20, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off