Fretting Wear Study of PEEK-Based Composites for Bio-implant Application

Fretting Wear Study of PEEK-Based Composites for Bio-implant Application The failure caused by fretting wear is a key issue in orthopedic applications as well as other engineering applications. In this study, fretting wear tests were conducted on poly (ether ether ketone) (PEEK), glass fiber reinforced PEEK (GFRPEEK) and carbon fiber reinforced PEEK (CFRPEEK), respectively. Surface characterizations of tested specimens were performed using XRD, microhardness tester, 3D white-light interfering profilometry, SEM and optical microscopy to analyze their wear features. The obtained results showed that the fibers increased the microhardness values and reduced the friction coefficients and wear rates of PEEK-based composites. The fretting regimes of PEEK, GFRPEEK and CFRPEEK were gross slip. The fretting wear mechanisms of those PEEK composites were dominated by abrasive wear, adhesive wear and delamination. CFRPEEK has demonstrated superior fretting wear characteristics, and hence, is a potential bio-implant material for applications such as artificial joints. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology Letters Springer Journals

Fretting Wear Study of PEEK-Based Composites for Bio-implant Application

Loading next page...
 
/lp/springer_journal/fretting-wear-study-of-peek-based-composites-for-bio-implant-DFg9rwLRVP
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
ISSN
1023-8883
eISSN
1573-2711
D.O.I.
10.1007/s11249-017-0931-8
Publisher site
See Article on Publisher Site

Abstract

The failure caused by fretting wear is a key issue in orthopedic applications as well as other engineering applications. In this study, fretting wear tests were conducted on poly (ether ether ketone) (PEEK), glass fiber reinforced PEEK (GFRPEEK) and carbon fiber reinforced PEEK (CFRPEEK), respectively. Surface characterizations of tested specimens were performed using XRD, microhardness tester, 3D white-light interfering profilometry, SEM and optical microscopy to analyze their wear features. The obtained results showed that the fibers increased the microhardness values and reduced the friction coefficients and wear rates of PEEK-based composites. The fretting regimes of PEEK, GFRPEEK and CFRPEEK were gross slip. The fretting wear mechanisms of those PEEK composites were dominated by abrasive wear, adhesive wear and delamination. CFRPEEK has demonstrated superior fretting wear characteristics, and hence, is a potential bio-implant material for applications such as artificial joints.

Journal

Tribology LettersSpringer Journals

Published: Oct 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off