Free and Membrane-Bound Multienzyme Complexes with Calvin Cycle Activities in Cotton Leaves

Free and Membrane-Bound Multienzyme Complexes with Calvin Cycle Activities in Cotton Leaves Free and membrane-bound forms of Calvin-cycle multienzyme complexes with a mol wt of 520 ± 20 kD and 640 ± 25 kD, respectively, were isolated from the cotton (Gossypium hirsutum L.) leaves. Both complexes exhibited the following enzymatic activities: ribose phosphate isomerase, phosphoribulokinase, ribulose bisphosphate carboxylase (Rubisco), phosphoglycerate kinase, and glyceraldehyde phosphate dehydrogenase. The activities of the membrane-bound multienzyme complex were significantly higher than the activities of the free complex. This difference was especially pronounced in the case of carboxylase activity. An increase in the enzymatic activity of membrane-bound multienzyme complex in comparison with the free complex is presumably due to the different number of their constituent parts. Another possible cause is the membrane-level regulation of the functional activity of the enzymes composing the complex. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Free and Membrane-Bound Multienzyme Complexes with Calvin Cycle Activities in Cotton Leaves

Loading next page...
 
/lp/springer_journal/free-and-membrane-bound-multienzyme-complexes-with-calvin-cycle-I37P9PwNN1
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1020272414760
Publisher site
See Article on Publisher Site

Abstract

Free and membrane-bound forms of Calvin-cycle multienzyme complexes with a mol wt of 520 ± 20 kD and 640 ± 25 kD, respectively, were isolated from the cotton (Gossypium hirsutum L.) leaves. Both complexes exhibited the following enzymatic activities: ribose phosphate isomerase, phosphoribulokinase, ribulose bisphosphate carboxylase (Rubisco), phosphoglycerate kinase, and glyceraldehyde phosphate dehydrogenase. The activities of the membrane-bound multienzyme complex were significantly higher than the activities of the free complex. This difference was especially pronounced in the case of carboxylase activity. An increase in the enzymatic activity of membrane-bound multienzyme complex in comparison with the free complex is presumably due to the different number of their constituent parts. Another possible cause is the membrane-level regulation of the functional activity of the enzymes composing the complex.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off