Frameshift Suppression through Inactivation of Translation Termination in Yeast Saccharomyces cerevisiae: Significance of the Local Context

Frameshift Suppression through Inactivation of Translation Termination in Yeast Saccharomyces... Site-directed mutagenesis and nucleotide sequence analysis were used to study the roles of the global and local contexts in suppression of the lys2-90 frameshift (FS) mutation inSaccharomyces cerevisiae. Global context features established for the LYS2 mRNA region containing the extra T (lys2-90) were similar to those characteristic of regions involved in translational frameshifting. These were a potential ability of the region to form a pseudoknot and the presence of heptanucleotide CUU UGA C with the “hungry” UGA nonsense codon in the pseudoknot. Some local context features proved to be essential for the phenotypic expression of FS suppression as a result of translational frameshifting. Two amino acid substitutions determined by the nucleotide sequence between the extra U and the UGA nonsense codon lacked expression. A dependence was observed between the efficiency of FS suppression and the type of the nonsense codon located at a particular position downstream of the extra nucleotide (UGA > UAG > UAA). When translation termination was inactivated, nonsense suppression and FS suppression correlated with each other. These results suggest that translational frameshifting, which underlies suppression in the case of inactivation of translation termination, most likely takes place on the nonsense codon arising as a result of insertion of an extra nucleotide. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Frameshift Suppression through Inactivation of Translation Termination in Yeast Saccharomyces cerevisiae: Significance of the Local Context

Loading next page...
 
/lp/springer_journal/frameshift-suppression-through-inactivation-of-translation-termination-SUGHFpWadI
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000036519.21457.64
Publisher site
See Article on Publisher Site

Abstract

Site-directed mutagenesis and nucleotide sequence analysis were used to study the roles of the global and local contexts in suppression of the lys2-90 frameshift (FS) mutation inSaccharomyces cerevisiae. Global context features established for the LYS2 mRNA region containing the extra T (lys2-90) were similar to those characteristic of regions involved in translational frameshifting. These were a potential ability of the region to form a pseudoknot and the presence of heptanucleotide CUU UGA C with the “hungry” UGA nonsense codon in the pseudoknot. Some local context features proved to be essential for the phenotypic expression of FS suppression as a result of translational frameshifting. Two amino acid substitutions determined by the nucleotide sequence between the extra U and the UGA nonsense codon lacked expression. A dependence was observed between the efficiency of FS suppression and the type of the nonsense codon located at a particular position downstream of the extra nucleotide (UGA > UAG > UAA). When translation termination was inactivated, nonsense suppression and FS suppression correlated with each other. These results suggest that translational frameshifting, which underlies suppression in the case of inactivation of translation termination, most likely takes place on the nonsense codon arising as a result of insertion of an extra nucleotide.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off