Frameshift Suppression through Inactivation of Translation Termination in Yeast Saccharomyces cerevisiae: Significance of the Local Context

Frameshift Suppression through Inactivation of Translation Termination in Yeast Saccharomyces... Site-directed mutagenesis and nucleotide sequence analysis were used to study the roles of the global and local contexts in suppression of the lys2-90 frameshift (FS) mutation inSaccharomyces cerevisiae. Global context features established for the LYS2 mRNA region containing the extra T (lys2-90) were similar to those characteristic of regions involved in translational frameshifting. These were a potential ability of the region to form a pseudoknot and the presence of heptanucleotide CUU UGA C with the “hungry” UGA nonsense codon in the pseudoknot. Some local context features proved to be essential for the phenotypic expression of FS suppression as a result of translational frameshifting. Two amino acid substitutions determined by the nucleotide sequence between the extra U and the UGA nonsense codon lacked expression. A dependence was observed between the efficiency of FS suppression and the type of the nonsense codon located at a particular position downstream of the extra nucleotide (UGA > UAG > UAA). When translation termination was inactivated, nonsense suppression and FS suppression correlated with each other. These results suggest that translational frameshifting, which underlies suppression in the case of inactivation of translation termination, most likely takes place on the nonsense codon arising as a result of insertion of an extra nucleotide. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Frameshift Suppression through Inactivation of Translation Termination in Yeast Saccharomyces cerevisiae: Significance of the Local Context

Loading next page...
 
/lp/springer_journal/frameshift-suppression-through-inactivation-of-translation-termination-SUGHFpWadI
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000036519.21457.64
Publisher site
See Article on Publisher Site

Abstract

Site-directed mutagenesis and nucleotide sequence analysis were used to study the roles of the global and local contexts in suppression of the lys2-90 frameshift (FS) mutation inSaccharomyces cerevisiae. Global context features established for the LYS2 mRNA region containing the extra T (lys2-90) were similar to those characteristic of regions involved in translational frameshifting. These were a potential ability of the region to form a pseudoknot and the presence of heptanucleotide CUU UGA C with the “hungry” UGA nonsense codon in the pseudoknot. Some local context features proved to be essential for the phenotypic expression of FS suppression as a result of translational frameshifting. Two amino acid substitutions determined by the nucleotide sequence between the extra U and the UGA nonsense codon lacked expression. A dependence was observed between the efficiency of FS suppression and the type of the nonsense codon located at a particular position downstream of the extra nucleotide (UGA > UAG > UAA). When translation termination was inactivated, nonsense suppression and FS suppression correlated with each other. These results suggest that translational frameshifting, which underlies suppression in the case of inactivation of translation termination, most likely takes place on the nonsense codon arising as a result of insertion of an extra nucleotide.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off