Fragmentation in calcareous grasslands: species specialization matters

Fragmentation in calcareous grasslands: species specialization matters Habitat fragmentation resulting from anthropogenic land-use change may negatively affect both biodiversity and ecosystem structure and function. However, susceptibility to fragmentation varies between species and may be influenced by for instance specialization, functional traits and trophic level. We examined how total and specialist species richness, species composition and functional trait composition at two trophic levels (vascular plants and sap-feeding hoppers) vary with habitat fragmentation (patch size and connectivity) in dry calcareous grasslands in southeast Norway. We found that fragmentation affected plant and hopper species composition both totally and of habitat specialists, but with a net species loss only for the specialists, indicating greater susceptibility of specialized species. Reductions in patch size and increasing isolation negatively affected plant specialists with different sets of traits, effectively reducing the number of species with trait combinations suitable to persist in small and isolated patches. Fragmentation influenced trait composition of the total hopper community, but not of habitat specialists. A lesser degree of habitat association could explain why hoppers, despite belonging to a higher tropic level, seemed to be less susceptible to fragmentation than plants. Nonetheless, our study shows that habitat fragmentation affects both species richness, species composition and trait composition of plants and hoppers, indicating that fragmentation leads not only to a loss of species, but also alters dominance hierarchies and the functionality of grassland communities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biodiversity and Conservation Springer Journals

Fragmentation in calcareous grasslands: species specialization matters

Loading next page...
 
/lp/springer_journal/fragmentation-in-calcareous-grasslands-species-specialization-matters-r1dB9L2r87
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Biodiversity; Ecology; Conservation Biology/Ecology; Climate Change/Climate Change Impacts
ISSN
0960-3115
eISSN
1572-9710
D.O.I.
10.1007/s10531-018-1540-z
Publisher site
See Article on Publisher Site

Abstract

Habitat fragmentation resulting from anthropogenic land-use change may negatively affect both biodiversity and ecosystem structure and function. However, susceptibility to fragmentation varies between species and may be influenced by for instance specialization, functional traits and trophic level. We examined how total and specialist species richness, species composition and functional trait composition at two trophic levels (vascular plants and sap-feeding hoppers) vary with habitat fragmentation (patch size and connectivity) in dry calcareous grasslands in southeast Norway. We found that fragmentation affected plant and hopper species composition both totally and of habitat specialists, but with a net species loss only for the specialists, indicating greater susceptibility of specialized species. Reductions in patch size and increasing isolation negatively affected plant specialists with different sets of traits, effectively reducing the number of species with trait combinations suitable to persist in small and isolated patches. Fragmentation influenced trait composition of the total hopper community, but not of habitat specialists. A lesser degree of habitat association could explain why hoppers, despite belonging to a higher tropic level, seemed to be less susceptible to fragmentation than plants. Nonetheless, our study shows that habitat fragmentation affects both species richness, species composition and trait composition of plants and hoppers, indicating that fragmentation leads not only to a loss of species, but also alters dominance hierarchies and the functionality of grassland communities.

Journal

Biodiversity and ConservationSpringer Journals

Published: Apr 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off