Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins

Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins Breast cancer is the most frequent cancer reported in women, being responsible for hundreds of thousands of deaths. Chemotherapy has proven to be effective against this malignant neoplasm depending on different biological factors such as the histopathology, grade, and stage, among others. However, breast cancer cells have become resistant to current chemotherapeutic regimens, urging the discovery of new anti-breast cancer drugs. Computational approaches have the potential to offer promising alternatives to accelerate the search for potent and versatile anti-breast cancer agents. In the present work, we introduce the first multitasking (mtk) computational model devoted to the in silico fragment-based design of new molecules with high inhibitory activity against 19 different proteins involved in breast cancer. The mtk-computational model was created from a dataset formed by 24,285 cases, and it exhibited accuracy around 93% in both training and prediction (test) sets. Several molecular fragments were extracted from the molecules present in the dataset, and their quantitative contributions to the inhibitory activities against all the proteins under study were calculated. The combined use of the fragment contributions and the physicochemical interpretations of the different molecular descriptors in the mtk-computational model allowed the design of eight new molecular entities not reported in our dataset. These molecules were predicted as potent multi-target inhibitors against all the proteins, and they exhibited a desirable druglikeness according to the Lipinski’s rule of five and its variants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Diversity Springer Journals

Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins

Loading next page...
 
/lp/springer_journal/fragment-based-in-silico-modeling-of-multi-target-inhibitors-against-lDjLi70z7g
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Life Sciences; Biochemistry, general; Organic Chemistry; Polymer Sciences; Pharmacy
ISSN
1381-1991
eISSN
1573-501X
D.O.I.
10.1007/s11030-017-9731-1
Publisher site
See Article on Publisher Site

Abstract

Breast cancer is the most frequent cancer reported in women, being responsible for hundreds of thousands of deaths. Chemotherapy has proven to be effective against this malignant neoplasm depending on different biological factors such as the histopathology, grade, and stage, among others. However, breast cancer cells have become resistant to current chemotherapeutic regimens, urging the discovery of new anti-breast cancer drugs. Computational approaches have the potential to offer promising alternatives to accelerate the search for potent and versatile anti-breast cancer agents. In the present work, we introduce the first multitasking (mtk) computational model devoted to the in silico fragment-based design of new molecules with high inhibitory activity against 19 different proteins involved in breast cancer. The mtk-computational model was created from a dataset formed by 24,285 cases, and it exhibited accuracy around 93% in both training and prediction (test) sets. Several molecular fragments were extracted from the molecules present in the dataset, and their quantitative contributions to the inhibitory activities against all the proteins under study were calculated. The combined use of the fragment contributions and the physicochemical interpretations of the different molecular descriptors in the mtk-computational model allowed the design of eight new molecular entities not reported in our dataset. These molecules were predicted as potent multi-target inhibitors against all the proteins, and they exhibited a desirable druglikeness according to the Lipinski’s rule of five and its variants.

Journal

Molecular DiversitySpringer Journals

Published: Feb 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off