Fracture mechanism of a laminated aluminum alloy plate during ballistic impact

Fracture mechanism of a laminated aluminum alloy plate during ballistic impact The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851 m·s−1. The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure. Optical microscopy (OM), electron back-scattered diffraction (EBSD) and scanning electron microscopy (SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed. Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging. The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer, accounting for the asymmetry of damage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rare Metals Springer Journals

Fracture mechanism of a laminated aluminum alloy plate during ballistic impact

Loading next page...
 
/lp/springer_journal/fracture-mechanism-of-a-laminated-aluminum-alloy-plate-during-2wSSjnyvzA
Publisher
Nonferrous Metals Society of China
Copyright
Copyright © 2016 by The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg
Subject
Materials Science; Metallic Materials; Nanotechnology; Ceramics, Glass, Composites, Natural Materials; Surfaces and Interfaces, Thin Films; Inorganic Chemistry; Physical Chemistry
ISSN
1001-0521
eISSN
1867-7185
D.O.I.
10.1007/s12598-015-0684-1
Publisher site
See Article on Publisher Site

Abstract

The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851 m·s−1. The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure. Optical microscopy (OM), electron back-scattered diffraction (EBSD) and scanning electron microscopy (SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed. Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging. The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer, accounting for the asymmetry of damage.

Journal

Rare MetalsSpringer Journals

Published: Jan 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off