Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer

Fractal-based radiomic approach to predict complete pathological response after... The aim of this study was to propose a methodology to investigate the tumour heterogeneity and evaluate its ability to predict pathologically complete response (pCR) after chemo-radiotherapy (CRT) in locally advanced rectal cancer (LARC). This approach consisted in normalising the pixel intensities of the tumour and identifying the different sub-regions using an intensity-based thresholding. The spatial organisation of these subpopulations was quantified using the fractal dimension (FD). This approach was implemented in a radiomic workflow and applied to 198 T2-weighted pre-treatment magnetic resonance (MR) images of LARC patients. Three types of features were extracted from the gross tumour volume (GTV): morphological, statistical and fractal features. Feature selection was performed using the Wilcoxon test and a logistic regression model was calculated to predict the pCR probability after CRT. The model was elaborated considering the patients treated in two institutions: Fondazione Policlinico Universitario “Agostino Gemelli” of Rome (173 cases, training set) and University Medical Centre of Maastricht (25 cases, validation set). The results obtained showed that the fractal parameters of the subpopulations have the highest performance in predicting pCR. The predictive model elaborated had an area under the curve (AUC) equal to 0.77 ± 0.07. The model reliability was confirmed by the validation set (AUC = 0.79 ± 0.09). This study suggests that the fractal analysis can play an important role in radiomics, providing valuable information not only about the GTV structure, but also about its inner subpopulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png La radiologia medica Springer Journals
Loading next page...
 
/lp/springer_journal/fractal-based-radiomic-approach-to-predict-complete-pathological-RBUOyfHILL
Publisher
Springer Milan
Copyright
Copyright © 2017 by Italian Society of Medical Radiology
Subject
Medicine & Public Health; Imaging / Radiology; Diagnostic Radiology; Interventional Radiology; Neuroradiology; Ultrasound
ISSN
0033-8362
eISSN
1826-6983
D.O.I.
10.1007/s11547-017-0838-3
Publisher site
See Article on Publisher Site

Abstract

The aim of this study was to propose a methodology to investigate the tumour heterogeneity and evaluate its ability to predict pathologically complete response (pCR) after chemo-radiotherapy (CRT) in locally advanced rectal cancer (LARC). This approach consisted in normalising the pixel intensities of the tumour and identifying the different sub-regions using an intensity-based thresholding. The spatial organisation of these subpopulations was quantified using the fractal dimension (FD). This approach was implemented in a radiomic workflow and applied to 198 T2-weighted pre-treatment magnetic resonance (MR) images of LARC patients. Three types of features were extracted from the gross tumour volume (GTV): morphological, statistical and fractal features. Feature selection was performed using the Wilcoxon test and a logistic regression model was calculated to predict the pCR probability after CRT. The model was elaborated considering the patients treated in two institutions: Fondazione Policlinico Universitario “Agostino Gemelli” of Rome (173 cases, training set) and University Medical Centre of Maastricht (25 cases, validation set). The results obtained showed that the fractal parameters of the subpopulations have the highest performance in predicting pCR. The predictive model elaborated had an area under the curve (AUC) equal to 0.77 ± 0.07. The model reliability was confirmed by the validation set (AUC = 0.79 ± 0.09). This study suggests that the fractal analysis can play an important role in radiomics, providing valuable information not only about the GTV structure, but also about its inner subpopulations.

Journal

La radiologia medicaSpringer Journals

Published: Dec 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial