FOXQ1 controls the induced differentiation of melanocytic cells

FOXQ1 controls the induced differentiation of melanocytic cells Oncogenic transcription factor FOXQ1 has been implicated in promotion of multiple transformed phenotypes in carcinoma cells. Recently, we have characterized FOXQ1 as a melanoma tumor suppressor that acts via repression of N-cadherin gene, and invasion and metastasis. Here we report that FOXQ1 induces differentiation in normal and transformed melanocytic cells at least partially via direct transcriptional activation of MITF gene, melanocytic lineage-specific regulator of differentiation. Importantly, we demonstrate that pigmentation induced in cultured melanocytic cells and in mice by activation of cAMP/CREB1 pathway depends in large part on FOXQ1. Moreover, our data reveal that FOXQ1 acts as a critical mediator of BRAFV600E-dependent regulation of MITF levels, thus providing a novel link between two major signal transduction pathways controlling MITF and differentiation in melanocytic cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell Death & Differentiation Springer Journals
Loading next page...
 
/lp/springer_journal/foxq1-controls-the-induced-differentiation-of-melanocytic-cells-1ZklSnXZbi
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by ADMC Associazione Differenziamento e Morte Cellulare
Subject
Life Sciences; Life Sciences, general; Biochemistry, general; Cell Biology; Stem Cells; Apoptosis; Cell Cycle Analysis
ISSN
1350-9047
eISSN
1476-5403
D.O.I.
10.1038/s41418-018-0066-y
Publisher site
See Article on Publisher Site

Abstract

Oncogenic transcription factor FOXQ1 has been implicated in promotion of multiple transformed phenotypes in carcinoma cells. Recently, we have characterized FOXQ1 as a melanoma tumor suppressor that acts via repression of N-cadherin gene, and invasion and metastasis. Here we report that FOXQ1 induces differentiation in normal and transformed melanocytic cells at least partially via direct transcriptional activation of MITF gene, melanocytic lineage-specific regulator of differentiation. Importantly, we demonstrate that pigmentation induced in cultured melanocytic cells and in mice by activation of cAMP/CREB1 pathway depends in large part on FOXQ1. Moreover, our data reveal that FOXQ1 acts as a critical mediator of BRAFV600E-dependent regulation of MITF levels, thus providing a novel link between two major signal transduction pathways controlling MITF and differentiation in melanocytic cells.

Journal

Cell Death & DifferentiationSpringer Journals

Published: Feb 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off