Forskolin-Induced Clearance of the Fluorescent Dye Sulforhodamine from Rat Parotid Intralobular Duct Lumen: Visualization of the Secretory Function under a Confocal Laser Scanning Microscope

Forskolin-Induced Clearance of the Fluorescent Dye Sulforhodamine from Rat Parotid Intralobular... Cyclic AMP evokes fluid secretion with bicarbonate in exocrine ducts. Clearance of fluorescent dyes from rat parotid intralobular ducts by forskolin was visualized as a fluorescence change in the duct luminal space by optical sectioning under a confocal laser scanning microscope to clarify the secretory function in the ducts. When the isolated rat parotid intralobular duct segments were superfused with membrane-impermeable fluorescent dyes during the experimental period, fluorescent dyes were passively moved into the duct space. Forskolin and isobutylmethylxanthine decreased the fluorescence of anionic dye, sulforhodamine B, and neutral dye, dextran tetramethyl-rhodamine, in the duct space, suggesting that the forskolin-induced clearance of fluorescent dyes might be the result of fluid secretion in the ducts. Methazolamide inhibited a forskolin-induced sustained decrease in duct fluorescence and intracellular acidification. Low concentrations of external Cl?, DIDS, bumetanide and amiloride did not markedly inhibit a forskolin-induced decrease in duct fluorescence. These findings suggest that a major portion of the steady decrease in duct fluorescence by forskolin was related to intracellular HCO3? production, not the uptake mechanism of external Cl?. Glibenclamide, NPPB, DPC and DMA inhibited the forskolin-induced decrease. Forskolin evokes the clearance of fluorescent dyes from duct space possibly due to fluid secretion in rat parotid ducts, associated with secretion through CFTR and DPC-sensitive anion channels of carbonic anhydrase-dependent bicarbonate linked with the Na+/H+ exchange mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Forskolin-Induced Clearance of the Fluorescent Dye Sulforhodamine from Rat Parotid Intralobular Duct Lumen: Visualization of the Secretory Function under a Confocal Laser Scanning Microscope

Loading next page...
 
/lp/springer_journal/forskolin-induced-clearance-of-the-fluorescent-dye-sulforhodamine-from-7DTpBzdzwq
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1036-2
Publisher site
See Article on Publisher Site

Abstract

Cyclic AMP evokes fluid secretion with bicarbonate in exocrine ducts. Clearance of fluorescent dyes from rat parotid intralobular ducts by forskolin was visualized as a fluorescence change in the duct luminal space by optical sectioning under a confocal laser scanning microscope to clarify the secretory function in the ducts. When the isolated rat parotid intralobular duct segments were superfused with membrane-impermeable fluorescent dyes during the experimental period, fluorescent dyes were passively moved into the duct space. Forskolin and isobutylmethylxanthine decreased the fluorescence of anionic dye, sulforhodamine B, and neutral dye, dextran tetramethyl-rhodamine, in the duct space, suggesting that the forskolin-induced clearance of fluorescent dyes might be the result of fluid secretion in the ducts. Methazolamide inhibited a forskolin-induced sustained decrease in duct fluorescence and intracellular acidification. Low concentrations of external Cl?, DIDS, bumetanide and amiloride did not markedly inhibit a forskolin-induced decrease in duct fluorescence. These findings suggest that a major portion of the steady decrease in duct fluorescence by forskolin was related to intracellular HCO3? production, not the uptake mechanism of external Cl?. Glibenclamide, NPPB, DPC and DMA inhibited the forskolin-induced decrease. Forskolin evokes the clearance of fluorescent dyes from duct space possibly due to fluid secretion in rat parotid ducts, associated with secretion through CFTR and DPC-sensitive anion channels of carbonic anhydrase-dependent bicarbonate linked with the Na+/H+ exchange mechanism.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off