# Formulation and numerical implementation of micro-scale boundary conditions for particle aggregates

Formulation and numerical implementation of micro-scale boundary conditions for particle aggregates Novel numerical algorithms are presented for the implementation of micro-scale boundary conditions of particle aggregates modelled with the discrete element method. The algorithms are based on a servo-control methodology, using a feedback principle comparable to that of algorithms commonly applied within control theory of dynamic systems. The boundary conditions are defined in accordance with the large deformation theory, and are imposed on a frame of boundary particles surrounding the interior granular micro-structure. Following the formulation presented in Miehe et al. (Int J Numer Methods Eng 83(8–9): 1206–1236, 2010), first three types of classical boundary conditions are considered, in accordance with (1) a homogeneous deformation and zero particle rotation (D), (2) a periodic particle displacement and rotation (P), and (3) a uniform particle force and free particle rotation (T). The algorithms can be straightforwardly combined with commercially available discrete element codes, thereby enabling the determination of the solution of boundary-value problems at the micro-scale only, or at multiple scales via a micro-to-macro coupling with a finite element model. The performance of the algorithms is tested by means of discrete element method simulations on regular monodisperse packings and irregular polydisperse packings composed of frictional particles, which were subjected to various loading paths. The simulations provide responses with the typical stiff and soft bounds for the (D) and (T) boundary conditions, respectively, and illustrate for the (P) boundary condition a relatively fast convergence of the apparent macroscopic properties under an increasing packing size. Finally, a homogenization framework is derived for the implementation of mixed (D)–(P)–(T) boundary conditions that satisfy the Hill–Mandel micro-heterogeneity condition on energy consistency at the micro- and macro-scales of the granular system. The numerical algorithm for the mixed boundary conditions is developed and tested for the case of an infinite layer subjected to a vertical compressive stress and a horizontal shear deformation, whereby the response computed for a layer of cohesive particles is compared against that for a layer of frictional particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Granular Matter Springer Journals

# Formulation and numerical implementation of micro-scale boundary conditions for particle aggregates

, Volume 19 (4) – Aug 20, 2017
24 pages

/lp/springer_journal/formulation-and-numerical-implementation-of-micro-scale-boundary-5KZU0bEQ2E
Publisher
Springer Berlin Heidelberg
Subject
Physics; Soft and Granular Matter, Complex Fluids and Microfluidics; Engineering Fluid Dynamics; Materials Science, general; Geoengineering, Foundations, Hydraulics; Industrial Chemistry/Chemical Engineering; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
1434-5021
eISSN
1434-7636
D.O.I.
10.1007/s10035-017-0757-y
Publisher site
See Article on Publisher Site

### Abstract

Novel numerical algorithms are presented for the implementation of micro-scale boundary conditions of particle aggregates modelled with the discrete element method. The algorithms are based on a servo-control methodology, using a feedback principle comparable to that of algorithms commonly applied within control theory of dynamic systems. The boundary conditions are defined in accordance with the large deformation theory, and are imposed on a frame of boundary particles surrounding the interior granular micro-structure. Following the formulation presented in Miehe et al. (Int J Numer Methods Eng 83(8–9): 1206–1236, 2010), first three types of classical boundary conditions are considered, in accordance with (1) a homogeneous deformation and zero particle rotation (D), (2) a periodic particle displacement and rotation (P), and (3) a uniform particle force and free particle rotation (T). The algorithms can be straightforwardly combined with commercially available discrete element codes, thereby enabling the determination of the solution of boundary-value problems at the micro-scale only, or at multiple scales via a micro-to-macro coupling with a finite element model. The performance of the algorithms is tested by means of discrete element method simulations on regular monodisperse packings and irregular polydisperse packings composed of frictional particles, which were subjected to various loading paths. The simulations provide responses with the typical stiff and soft bounds for the (D) and (T) boundary conditions, respectively, and illustrate for the (P) boundary condition a relatively fast convergence of the apparent macroscopic properties under an increasing packing size. Finally, a homogenization framework is derived for the implementation of mixed (D)–(P)–(T) boundary conditions that satisfy the Hill–Mandel micro-heterogeneity condition on energy consistency at the micro- and macro-scales of the granular system. The numerical algorithm for the mixed boundary conditions is developed and tested for the case of an infinite layer subjected to a vertical compressive stress and a horizontal shear deformation, whereby the response computed for a layer of cohesive particles is compared against that for a layer of frictional particles.

### Journal

Granular MatterSpringer Journals

Published: Aug 20, 2017

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month ### Explore the DeepDyve Library ### Search Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly ### Organize Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place. ### Access Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals. ### Your journals are on DeepDyve Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more. All the latest content is available, no embargo periods. DeepDyve ### Freelancer DeepDyve ### Pro Price FREE$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations