Forms of natural selection controlling the genomic evolution in nodule bacteria

Forms of natural selection controlling the genomic evolution in nodule bacteria The role of different forms of natural selection in the evolution of genomes in root nodule bacteria (rhizobia) is analyzed for the first time. In these nitrogen-fixing symbionts of leguminous plants, two types of genome organization are revealed: (i) unitary type, where over 95% of genetic information is encoded by chromosomes (5.3–5.5 Mb in Azorhizobium, 7.0–7.8 Mb in Mesorhizobium, 7.3–10.1 Mb in Bradyrhizobium); (ii) multipartite type, where up to 50% of genetic information is allocated to plasmids or chromids which may exceed 2 Mb in size and usually control the symbiotic properties (pSyms) in fast-growing rhizobia (Rhizobium, Sinorhizobium, Neorhizobium). Emergence of fast-growing species with narrow host ranges are correlated to the extension of extrachromosomal parts of genomes, including the increase in pSyms sizes (in Sinorhizobium). An important role in this evolution is implemented by diversifying selection since the genomic diversity evolved in rhizobia owing to symbiotic interactions with highly divergent legumes. However, analysis of polymorphism in nod genes (encoding synthesis of lipo-chitooligosaccharide signaling Nod factors) suggests that the impacts of diversifying selection are restricted to the bacterial divergence for host specificity and do not influence the overall genome organization. Since the extension of rhizobia genome diversity results from the horizontal sym gene transfer occurring with low frequencies, we suggest that this extension is due to the frequency-dependent selection anchoring the rare genotypes in bacterial populations. It is implemented during the rhizobia competition for nodulation encoded by the functionally diverse cmp genes. Their location in different parts of bacterial genomes may be considered as an important factor of their adaptive diversification implemented in the host-associated microbial communities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Forms of natural selection controlling the genomic evolution in nodule bacteria

Loading next page...
 
/lp/springer_journal/forms-of-natural-selection-controlling-the-genomic-evolution-in-nodule-V340nAn3VL
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795417040123
Publisher site
See Article on Publisher Site

Abstract

The role of different forms of natural selection in the evolution of genomes in root nodule bacteria (rhizobia) is analyzed for the first time. In these nitrogen-fixing symbionts of leguminous plants, two types of genome organization are revealed: (i) unitary type, where over 95% of genetic information is encoded by chromosomes (5.3–5.5 Mb in Azorhizobium, 7.0–7.8 Mb in Mesorhizobium, 7.3–10.1 Mb in Bradyrhizobium); (ii) multipartite type, where up to 50% of genetic information is allocated to plasmids or chromids which may exceed 2 Mb in size and usually control the symbiotic properties (pSyms) in fast-growing rhizobia (Rhizobium, Sinorhizobium, Neorhizobium). Emergence of fast-growing species with narrow host ranges are correlated to the extension of extrachromosomal parts of genomes, including the increase in pSyms sizes (in Sinorhizobium). An important role in this evolution is implemented by diversifying selection since the genomic diversity evolved in rhizobia owing to symbiotic interactions with highly divergent legumes. However, analysis of polymorphism in nod genes (encoding synthesis of lipo-chitooligosaccharide signaling Nod factors) suggests that the impacts of diversifying selection are restricted to the bacterial divergence for host specificity and do not influence the overall genome organization. Since the extension of rhizobia genome diversity results from the horizontal sym gene transfer occurring with low frequencies, we suggest that this extension is due to the frequency-dependent selection anchoring the rare genotypes in bacterial populations. It is implemented during the rhizobia competition for nodulation encoded by the functionally diverse cmp genes. Their location in different parts of bacterial genomes may be considered as an important factor of their adaptive diversification implemented in the host-associated microbial communities.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off