Formation of three-dimensional structures in the silicon carbide substrates by plasma-chemical etching

Formation of three-dimensional structures in the silicon carbide substrates by plasma-chemical... A survey dealing with the technology of the formation of three-dimensional structures in silicon carbide substrates is presented. As for technology, this problem can be solved by variational ion-stimulated plasma-chemical etching, and most successfully by the source of inductively coupled plasma (ICP). Silicon carbide consists of silicon and carbon that form volatile fluorides in the reaction with fluorine. The etching reaction takes place in the interaction of silicon and carbon with reactive intermediates and fluorine ions. That is why the fluorine-containing gas, sulfur hexafluoride SF6 in most cases (often with an admixture of oxygen and sometimes argon), is used for the plasma-chemical etching of silicon carbide. The materials that do not react with fluorine are applied for masking during the plasma-chemical etching of silicon carbide. The films of metals such as Cu, Al, and Ni are mainly used and silicon oxide is less used. The formation of through-holes in these substrates followed by the metallization of the holes is a particularly important technological concept related to the plasma-chemical etching of the SiC substrates with the deposited GaN epitaxial layers. Examples of the use of ICP sources for the formation of micro- and nanosize three-dimensional structures in silicon carbide are given. Among them, the formation of the through-holes in the substrates of silicon carbide with epitaxial layers of gallium nitride is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Formation of three-dimensional structures in the silicon carbide substrates by plasma-chemical etching

Loading next page...
 
/lp/springer_journal/formation-of-three-dimensional-structures-in-the-silicon-carbide-HhZRfGk6Gz
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739716080138
Publisher site
See Article on Publisher Site

Abstract

A survey dealing with the technology of the formation of three-dimensional structures in silicon carbide substrates is presented. As for technology, this problem can be solved by variational ion-stimulated plasma-chemical etching, and most successfully by the source of inductively coupled plasma (ICP). Silicon carbide consists of silicon and carbon that form volatile fluorides in the reaction with fluorine. The etching reaction takes place in the interaction of silicon and carbon with reactive intermediates and fluorine ions. That is why the fluorine-containing gas, sulfur hexafluoride SF6 in most cases (often with an admixture of oxygen and sometimes argon), is used for the plasma-chemical etching of silicon carbide. The materials that do not react with fluorine are applied for masking during the plasma-chemical etching of silicon carbide. The films of metals such as Cu, Al, and Ni are mainly used and silicon oxide is less used. The formation of through-holes in these substrates followed by the metallization of the holes is a particularly important technological concept related to the plasma-chemical etching of the SiC substrates with the deposited GaN epitaxial layers. Examples of the use of ICP sources for the formation of micro- and nanosize three-dimensional structures in silicon carbide are given. Among them, the formation of the through-holes in the substrates of silicon carbide with epitaxial layers of gallium nitride is discussed.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off