Formation of the Pigment Apparatus in Etiolated Barley Leaves under the Influence of Levulinic Acid

Formation of the Pigment Apparatus in Etiolated Barley Leaves under the Influence of Levulinic Acid The effects of levulinic acid (LA) on the synthesis of pigments and the membrane system of etioplasts were studied in etiolated leaves of barley (Hordeum vulgare L.). Growing in the solution of LA during a six-day period, which started one day after the soaking of seeds, resulted in a retardation of leaf growth, more than a twofold decrease in the level of carotenoids and protochlorophyllide (Pd) in the leaf tissue, and suppression of the synthesis of long-wave form of Pd655; these effects depended on the LA concentration. In etioplasts isolated from the seedlings treated with 50 μM LA and containing predominantly a short-wave form of Pd with a peak of fluorescence at 632 nm (–196°C), there was a membrane fraction whose location in the sucrose density gradient was identical to that of prolamellar bodies (PLB) in the control plants. The content of Pd and carotenoids in this fraction calculated on a protein basis was 2.46 and 1.3 times lower than in control seedlings, while the relative content of Pd oxidoreductase (POR) essentially did not change. Thus, the suppression of Pd synthesis did not affect translocation of POR from the cytoplasm to the membranes of etioplasts. In the PLB membranes, there was no transfer of energy from the molecules of lipophilic fluorescent probe pyrene (excitation at 337, 278, and 296 nm) to Pd; however, under pigment deficiency, the production therein of pyrene excimer form at the expense of energy transfer from protein tryptophanyls (excitation at 278 and 296 nm) became more efficient, which indicated changes in protein–lipid interactions. The obtained results suggest that the short-wave form of Pd632 accumulating in etioplasts under the suppressed synthesis of tetrapyrroles is not a free pigment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Formation of the Pigment Apparatus in Etiolated Barley Leaves under the Influence of Levulinic Acid

Loading next page...
 
/lp/springer_journal/formation-of-the-pigment-apparatus-in-etiolated-barley-leaves-under-1f9Es20rBM
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000028676.15602.7e
Publisher site
See Article on Publisher Site

Abstract

The effects of levulinic acid (LA) on the synthesis of pigments and the membrane system of etioplasts were studied in etiolated leaves of barley (Hordeum vulgare L.). Growing in the solution of LA during a six-day period, which started one day after the soaking of seeds, resulted in a retardation of leaf growth, more than a twofold decrease in the level of carotenoids and protochlorophyllide (Pd) in the leaf tissue, and suppression of the synthesis of long-wave form of Pd655; these effects depended on the LA concentration. In etioplasts isolated from the seedlings treated with 50 μM LA and containing predominantly a short-wave form of Pd with a peak of fluorescence at 632 nm (–196°C), there was a membrane fraction whose location in the sucrose density gradient was identical to that of prolamellar bodies (PLB) in the control plants. The content of Pd and carotenoids in this fraction calculated on a protein basis was 2.46 and 1.3 times lower than in control seedlings, while the relative content of Pd oxidoreductase (POR) essentially did not change. Thus, the suppression of Pd synthesis did not affect translocation of POR from the cytoplasm to the membranes of etioplasts. In the PLB membranes, there was no transfer of energy from the molecules of lipophilic fluorescent probe pyrene (excitation at 337, 278, and 296 nm) to Pd; however, under pigment deficiency, the production therein of pyrene excimer form at the expense of energy transfer from protein tryptophanyls (excitation at 278 and 296 nm) became more efficient, which indicated changes in protein–lipid interactions. The obtained results suggest that the short-wave form of Pd632 accumulating in etioplasts under the suppressed synthesis of tetrapyrroles is not a free pigment.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off