Formation of silver nanoparticles in formamide:water mixtures: a radiolytic study

Formation of silver nanoparticles in formamide:water mixtures: a radiolytic study The pulse radiolysis of FA and FA:water solutions was studied in the absence and presence of redox indicator 1,1′-dimethyl-4,4′-bipyridinium dichloride (methyl viologen, MV2+). The experiments performed in the presence of MV2+ have provided strong support to the idea that the first species obtained from the reaction of e sol − and •OH with FA produces radicals that show reactivity towards the MV2+. Both the radicals on reaction with MV2+ results in the appearance of the well-known intense blue MV•+ radical absorption signal (λmax = 395 nm, λmax = 605 nm). The intermediate radicals formed during radiolysis were used to generate silver nanoparticles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Formation of silver nanoparticles in formamide:water mixtures: a radiolytic study

Loading next page...
 
/lp/springer_journal/formation-of-silver-nanoparticles-in-formamide-water-mixtures-a-VukIunDQNn
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0140-7
Publisher site
See Article on Publisher Site

Abstract

The pulse radiolysis of FA and FA:water solutions was studied in the absence and presence of redox indicator 1,1′-dimethyl-4,4′-bipyridinium dichloride (methyl viologen, MV2+). The experiments performed in the presence of MV2+ have provided strong support to the idea that the first species obtained from the reaction of e sol − and •OH with FA produces radicals that show reactivity towards the MV2+. Both the radicals on reaction with MV2+ results in the appearance of the well-known intense blue MV•+ radical absorption signal (λmax = 395 nm, λmax = 605 nm). The intermediate radicals formed during radiolysis were used to generate silver nanoparticles.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 26, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off