Formation of nonstoichiometric titanium oxides nanoparticles Ti n O2n–1 upon heat-treatments of titanium hydroxide and anatase nanoparticles in a hydrogen flow

Formation of nonstoichiometric titanium oxides nanoparticles Ti n O2n–1 upon heat-treatments of... Titania powders with anatase structure and crystallite size ranged from 20 to 27 nm were produced from titanium hydroxide by hydrothermal synthesis. The nanopowders and the initial hydroxide were isothermally heat-treated in a hydrogen flow at temperatures of 00–1000°C for times ranging from 1 to 27.5 h. It was found that the thermal treatment of titanium hydroxide in a reducing atmosphere at 800–900°C yields TiO2 with rutile structure. An unusual thermal stability of the metastable structure of anatase was observed in the case of nanocrystalline TiO2 powders up to a temperature of 900°C at which the anatase–rutile phase transition is observed. It was found that the nonstoichiometry of rutile and anatase powders changes upon a thermal treatment in a hydrogen flow. The heat-treatment in a hydrogen flow at 1000°C for 1 h was shown to lead to the formation of nanoparticles of the Magneli phase with the composition corresponding to Ti9O17 irrespective of the chemical nature of the precursor. The increase of the heat-treatment time at this temperature leads to the appearing of the Magneli phases with the compositions corresponding to Ti8O15 and Ti9O17 and Ti2O3 and Ti3O5 suboxides in addition to the Ti9O17 main phase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Formation of nonstoichiometric titanium oxides nanoparticles Ti n O2n–1 upon heat-treatments of titanium hydroxide and anatase nanoparticles in a hydrogen flow

Loading next page...
 
/lp/springer_journal/formation-of-nonstoichiometric-titanium-oxides-nanoparticles-ti-n-o2n-hcH89fJjoM
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216080012
Publisher site
See Article on Publisher Site

Abstract

Titania powders with anatase structure and crystallite size ranged from 20 to 27 nm were produced from titanium hydroxide by hydrothermal synthesis. The nanopowders and the initial hydroxide were isothermally heat-treated in a hydrogen flow at temperatures of 00–1000°C for times ranging from 1 to 27.5 h. It was found that the thermal treatment of titanium hydroxide in a reducing atmosphere at 800–900°C yields TiO2 with rutile structure. An unusual thermal stability of the metastable structure of anatase was observed in the case of nanocrystalline TiO2 powders up to a temperature of 900°C at which the anatase–rutile phase transition is observed. It was found that the nonstoichiometry of rutile and anatase powders changes upon a thermal treatment in a hydrogen flow. The heat-treatment in a hydrogen flow at 1000°C for 1 h was shown to lead to the formation of nanoparticles of the Magneli phase with the composition corresponding to Ti9O17 irrespective of the chemical nature of the precursor. The increase of the heat-treatment time at this temperature leads to the appearing of the Magneli phases with the compositions corresponding to Ti8O15 and Ti9O17 and Ti2O3 and Ti3O5 suboxides in addition to the Ti9O17 main phase.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Nov 24, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off