Formation of different products during photo-catalytic reaction on TiO2 suspension in water with and without 2-propanol under diverse ambient conditions

Formation of different products during photo-catalytic reaction on TiO2 suspension in water with... Studies on photo-catalytic reduction of CO2 using TiO2 photo-catalyst (0.1%, w/v) as a suspension in water was carried out at 350 nm light. CO2 from both commercially available source, as well as generated in situ through 2-propanol oxidation, was used for this study. The photolytic products such as hydrogen (H2), carbon monoxide (CO) andmethane (CH4) generated were monitored in TiO2 suspended aqueous solution with and without a hole scavenger, viz., 2-propanol. Similar photolytic experiments were also carried out with varying ambient such as air, O2, N2 and N2O. The yields of CO and CH4 in all these systems under the present experimental conditions were found to be increasing with light exposure time. H2 yield in N2-purged systems containing 2-propanol was found to be more as compared to the without 2-propanol system. The rate of H2 production in N2-purged aqueous solutions containing 0.1% TiO2 suspension were evaluated to be 0.226 and 5.8 μl/h, without and with 0.5 M 2-propanol, respectively. This confirmed that 2-propanol was an efficient hole scavenger and it scavenged photo-generated holes (h+), allowing its counter ion, viz., e−, to react with water molecule/H+ to yield more H2. The formation of both CO and CH4 in the photolysis of CO2-purged aqueous solutions containing suspended TiO2 in absence of 2-propanol reveal that the generation of CH4 is taking place mainly through CO intermediate. In presence of air/O2, the yield of H2 in the system without 2-propanol was observed to be negligible as compared to the system containing 2-propanol in which low yield of H2 was obtained with a formation rate of approx. 0.5 μl/h. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Formation of different products during photo-catalytic reaction on TiO2 suspension in water with and without 2-propanol under diverse ambient conditions

Loading next page...
 
/lp/springer_journal/formation-of-different-products-during-photo-catalytic-reaction-on-QLg08YAhLr
Publisher
Brill Academic Publishers
Copyright
Copyright © 2007 by VSP
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856707781749883
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial